Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Predicting the Fate of Stem Cells

Advanced computer vision technology detects subtle cell movements that are impossible to discern with the human eye.
Advanced computer vision technology detects subtle cell movements that are impossible to discern with the human eye.

Abstract:
New method decodes cell movements, accurately predicts how cells will divide

Predicting the Fate of Stem Cells

Troy, NY | Posted on March 1st, 2010

Researchers at Rensselaer Polytechnic Institute have discovered a new method for predicting — with up to 99 percent accuracy — the fate of stem cells.

Using advanced computer vision technology to detect subtle cell movements that are impossible to discern with the human eye, Professor Badri Roysam and his former student Andrew Cohen ‘89 can successfully forecast how a stem cell will split and what key characteristics the daughter cells will exhibit.

By allowing the isolation of cells with specific capabilities, this discovery could one day lead to effective methods for growing stem cells on a large scale for therapeutic use.

"If you have many cells in a culture, they all look the same. But our new method senses all sorts of tiny differences in the shapes and movements of the cells, and uses these cues to predict what kind of cells it will divide into," said Roysam, professor of electrical, computer, and systems engineering at Rensselaer. "We believe this method will be beneficial for one day taking cells from a patient, and then growing large amounts of the kind of cells that patient is in need of. This could enable many new and exciting types of medical treatments using stem cells."

Results of the study, titled "Computational prediction of neural progenitor cell fates," were published recently in the journal Nature Methods.

In order to achieve successful stem cell-based therapies, researchers require access to large amounts of specific cells. This has proven difficult, as there are currently no methods for controlling or manipulating the division of bulk quantities of cells. When stem cells or progenitor cells divide via mitosis, the resulting daughter cells can be self-renewing or terminal. A self-renewing cell will go on to split into two daughter cells, while a terminally differentiated cell is fated to be a specific, specialized cell type. Researchers want the ability to influence this division in order to produce large volumes of the correct type of cells.

Roysam and Cohen tracked the development of rat retinal progenitor cells cultured in their collaborator's laboratory at McGill University. The computer system they developed took images of the cells every five minutes, and employed algorithmic information theoretic prediction (AITP) to observe the behavior of the cells, analyze the behavior, and discern whether each individual cell is fated to split into self-replicating or terminal daughter cells. This process occurs in real time, so researchers know the fate of cells before they actually divide.

The researchers predicted with 99 percent accuracy if the rat retinal progenitor cells would split into self-renewing or specialized cells, and predicted with 87 percent accuracy certain characteristics of the specialized cells.

"Our results suggest that stem cells display subtle dynamic patterns that can be sensed computationally to predict the outcome of their next division using AITP," Roysam said. "In theory, AITP can be used to analyze nearly any type of cell, and could lead to advances in many different fields."

Roysam said prototyping and development of the system leveraged the processing power of Rensselaer's supercomputer, the Computational Center for Nanotechnology Innovations (CCNI).

Co-authors of the paper are Michel Cayouette and Francisco Gomes of the Cellular Neurobiology Research Unit at the Institut de Recherces Cliniques de Monteal; and Roysam's former student Cohen, now an assistant professor of electrical engineering and computer science at the University of Wisconsin, Milwaukee.

This project was supported in part by the U.S. National Science Foundation Center for Subsurface Sensing and Imaging Systems, the Canadian Institutes of Health Research, and the Foundation Fighting Blindness-Canada.

For more information, visit Roysam's Web site at: www.ecse.rpi.edu/~roysam.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute is the nation’s oldest technological university. The university offers degrees from five schools: Engineering; Science; Architecture; Humanities, Arts, and Social Sciences; and the Lally School of Management & Technology; as well as an interdisciplinary degree in Information Technology.

Institute programs serve undergraduates, graduate students, and working professionals around the world. The Institute’s long-standing reputation drew students from 39 states in addition to Washington, D.C., Puerto Rico, and 13 foreign countries in the fall of 2009.

Rensselaer offers more than 145 programs at the bachelor’s, master’s, and doctoral levels. Students are encouraged to work in interdisciplinary programs that allow them to combine scholarly work from several departments or schools. The university provides rigorous, engaging, interactive learning environments and campus-wide opportunities for leadership, collaboration, and creativity.

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Possible Futures

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Nanomedicine

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Discoveries

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Superfast light source made from artificial atom April 28th, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

Nanobiotechnology

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic