Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Predicting the Fate of Stem Cells

Advanced computer vision technology detects subtle cell movements that are impossible to discern with the human eye.
Advanced computer vision technology detects subtle cell movements that are impossible to discern with the human eye.

Abstract:
New method decodes cell movements, accurately predicts how cells will divide

Predicting the Fate of Stem Cells

Troy, NY | Posted on March 1st, 2010

Researchers at Rensselaer Polytechnic Institute have discovered a new method for predicting — with up to 99 percent accuracy — the fate of stem cells.

Using advanced computer vision technology to detect subtle cell movements that are impossible to discern with the human eye, Professor Badri Roysam and his former student Andrew Cohen ‘89 can successfully forecast how a stem cell will split and what key characteristics the daughter cells will exhibit.

By allowing the isolation of cells with specific capabilities, this discovery could one day lead to effective methods for growing stem cells on a large scale for therapeutic use.

"If you have many cells in a culture, they all look the same. But our new method senses all sorts of tiny differences in the shapes and movements of the cells, and uses these cues to predict what kind of cells it will divide into," said Roysam, professor of electrical, computer, and systems engineering at Rensselaer. "We believe this method will be beneficial for one day taking cells from a patient, and then growing large amounts of the kind of cells that patient is in need of. This could enable many new and exciting types of medical treatments using stem cells."

Results of the study, titled "Computational prediction of neural progenitor cell fates," were published recently in the journal Nature Methods.

In order to achieve successful stem cell-based therapies, researchers require access to large amounts of specific cells. This has proven difficult, as there are currently no methods for controlling or manipulating the division of bulk quantities of cells. When stem cells or progenitor cells divide via mitosis, the resulting daughter cells can be self-renewing or terminal. A self-renewing cell will go on to split into two daughter cells, while a terminally differentiated cell is fated to be a specific, specialized cell type. Researchers want the ability to influence this division in order to produce large volumes of the correct type of cells.

Roysam and Cohen tracked the development of rat retinal progenitor cells cultured in their collaborator's laboratory at McGill University. The computer system they developed took images of the cells every five minutes, and employed algorithmic information theoretic prediction (AITP) to observe the behavior of the cells, analyze the behavior, and discern whether each individual cell is fated to split into self-replicating or terminal daughter cells. This process occurs in real time, so researchers know the fate of cells before they actually divide.

The researchers predicted with 99 percent accuracy if the rat retinal progenitor cells would split into self-renewing or specialized cells, and predicted with 87 percent accuracy certain characteristics of the specialized cells.

"Our results suggest that stem cells display subtle dynamic patterns that can be sensed computationally to predict the outcome of their next division using AITP," Roysam said. "In theory, AITP can be used to analyze nearly any type of cell, and could lead to advances in many different fields."

Roysam said prototyping and development of the system leveraged the processing power of Rensselaer's supercomputer, the Computational Center for Nanotechnology Innovations (CCNI).

Co-authors of the paper are Michel Cayouette and Francisco Gomes of the Cellular Neurobiology Research Unit at the Institut de Recherces Cliniques de Monteal; and Roysam's former student Cohen, now an assistant professor of electrical engineering and computer science at the University of Wisconsin, Milwaukee.

This project was supported in part by the U.S. National Science Foundation Center for Subsurface Sensing and Imaging Systems, the Canadian Institutes of Health Research, and the Foundation Fighting Blindness-Canada.

For more information, visit Roysam's Web site at: www.ecse.rpi.edu/~roysam.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute is the nation’s oldest technological university. The university offers degrees from five schools: Engineering; Science; Architecture; Humanities, Arts, and Social Sciences; and the Lally School of Management & Technology; as well as an interdisciplinary degree in Information Technology.

Institute programs serve undergraduates, graduate students, and working professionals around the world. The Institute’s long-standing reputation drew students from 39 states in addition to Washington, D.C., Puerto Rico, and 13 foreign countries in the fall of 2009.

Rensselaer offers more than 145 programs at the bachelor’s, master’s, and doctoral levels. Students are encouraged to work in interdisciplinary programs that allow them to combine scholarly work from several departments or schools. The university provides rigorous, engaging, interactive learning environments and campus-wide opportunities for leadership, collaboration, and creativity.

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Nanomedicine

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Discoveries

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Tools

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanobiotechnology

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE