Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Surface science goes inorganic

Abstract:
Powerful concept offers new approach to understanding surfaces of materials

Surface science goes inorganic

Evanston, IL | Posted on February 18th, 2010

A collaboration between researchers at Northwestern University's Center for Catalysis and scientists at Oxford University has produced a new approach for understanding surfaces, particularly metal oxide surfaces, widely used in industry as supports for catalysts.

This knowledge of the surface layer of atoms is critical to understanding a material's overall properties. The findings were published online Feb. 14 by the journal Nature Materials.

Using a combination of advanced experimental tools coupled with theoretical calculations, the research team has shown how, using methods commonly taught to undergraduate chemistry students, one can understand how atoms are arranged on a material's surface. (These methods date back to the pioneering work of Linus Pauling and others to understand the chemical bond.)

"For a long time we have not understood oxide surfaces," said Laurence Marks, professor of materials science and engineering in the McCormick School of Engineering and Applied Science at Northwestern. "We only have had relatively simple models constructed from crystal planes of the bulk structure, and these have not enabled us to predict where the atoms should be on a surface.

"Now we have something that seems to work," Marks said. "It's the bond-valence-sum method, which has been used for many years to understand bulk materials. The way to understand oxide surfaces turns out to be to look at the bonding patterns and how the atoms are arranged and then to follow this method."

Marks, together with Kenneth Poeppelmeier, professor of chemistry in Northwestern's Weinberg College of Arts and Sciences, and Martin Castell, university lecturer in the department of materials at Oxford, led the research.

In the study, Northwestern graduate student James Enterkin analyzed electron diffraction patterns from a strontium titanate surface to work out the atomic structure. He combined the patterns with scanning-tunnelling microscopy images obtained by Bruce Russell at Oxford. Enterkin then combined them with density functional calculations and bond-valence sums, showing that those that had bonding similar to that found in bulk oxides were those with the lowest energy.

Writing in a "News and Views" article from the same issue of Nature Materials, Ulrike Diebold from the Institute of Applied Physics in Vienna, Austria, said, "This simple and intuitive, yet powerful concept [the bond-valence-sum method] is widely used to analyze and predict structures in inorganic chemistry. Its successful description of the surface reconstruction of SrTiO3 (110) shows that this approach could be relevant for similar phenomena in other materials."

The Nature Materials paper is titled "A homologous series of structures on the surface of SrTiO3 (110)." The authors of the paper are James A. Enterkin (first author), Arun K. Subramanian, Kenneth R. Poeppelmeier and Laurence D. Marks, from Northwestern, and Bruce C. Russell and Martin R. Castell, from Oxford.

####

About Northwestern University
Northwestern University combines innovative teaching and pioneering research in a highly collaborative environment that transcends traditional academic boundaries. It provides students and faculty exceptional opportunities for intellectual, personal and professional growth in a setting enhanced by the richness of Chicago.

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Chemistry

Thinnest feasible membrane produced April 17th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles April 1st, 2014

Materials/Metamaterials

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Announcements

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Alliances/Partnerships/Distributorships

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Peer Reviewed and Approved for Science by the the Washington Academy of Sciences April 3rd, 2014

New JEOL-Nikon MiXcroscopy Correlative Imaging Solution March 27th, 2014

Quantum Dots Take Center Stage at Inaugural Event: QD Vision Co-Founder and CTO Dr. Seth Coe-Sullivan to Chair First Quantum Dots Forum, March 26, 2014, San Diego, CA March 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE