Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A new way to build membranes for fuel cells

Postdoctoral researcher Avni Argun and professor Paula Hammond in the lab where they developed new technology for making fuel-cell membranes. 
Photo: Patrick Gillooly
Postdoctoral researcher Avni Argun and professor Paula Hammond in the lab where they developed new technology for making fuel-cell membranes. Photo: Patrick Gillooly

Abstract:
Layer-by-layer assembly system could lead to improved fuel cells, batteries and solar panels

A new way to build membranes for fuel cells

Cambridge, MA | Posted on February 17th, 2010

A team of researchers at MIT and Pennsylvania State University has been developing a new method for producing novel kinds of membranes that could have improved properties for batteries, fuel cells and other energy conversion and storage applications.

After years of working on a novel way of making membranes through a unique layer-by-layer assembly, the team has developed a material specifically designed for the needs of advanced fuel cells devices that can convert fuel to electricity without combustion, thereby avoiding the emission of any pollutants or greenhouse gases. This material has now undergone laboratory testing to determine its actual properties, which confirm the predictions and show the material's promise. The results were recently reported in the journal Chemistry of Materials.

Electrolytes, used in both batteries and fuel cells, are materials that contain many ions (atoms or molecules that have a net electrical charge), making it easy for an electric current to flow through them. In both batteries and fuel cells, this material is sandwiched between two electrodes a positive electrode (called the cathode) on one side, and a negative one (called the anode) on the other. In a battery, that's all there is, but in a fuel cell there are channels on each side, carrying a fuel (usually hydrogen or methanol) over the anode, and oxygen or air over the cathode. That enables fuel cells to keep producing electricity indefinitely, as long as there is a supply of fuel and air.

In a fuel cell, the electrolyte membrane also serves a second function, to keep the fuel on one side of the cell from migrating across to the other side. Such migration contaminates the cell and can lead to a significant drop in efficiency. One big advantage of the new membranes produced by the MIT-developed process is that they are especially good at blocking the migration of methanol fuel.

Direct-methanol fuel cells are considered a promising clean-energy source because they efficiently convert fuel to electricity without combustion, so they don't emit any pollutants to the air. And unlike the hydrogen used for some fuel cells, methanol is a liquid that is easy to store and transport in conventional tanks.

Layer by layer

The basic layer-by-layer system for making the membranes works like this: a substrate, such as a sheet of glass or metal, is dipped into a bath of solution that deposits a layer on the surface. It is then transferred to a second solution, which deposits a layer of a different material, then back to the first bath, and so on. The thicknesses of the layers can be controlled at the nanometer scale, and the layers bond tightly to one another because of electrostatic forces. At the end of the process, the multilayer coating can then be peeled off the substrate with tweezers, or left in place.

The researchers say this approach can produce materials that could not be made by other presently available methods. Svetlana Sukhishvili, professor of chemistry, chemical biology and biomedical engineering at the Stevens Institute of Technology in New Jersey, says "In my view, the technology is very promising and highly suited to integrate the two potentially conflicting yet crucially needed properties mechanical strength and high ionic conductivity in a single polymer material." Sukhishvili, who was not involved in the research, calls this approach "a significant breakthrough" for the production of fuel-cell membranes.

Tests showed that when alternating two kinds of polymer coatings with different properties, the resulting membrane had properties intermediate between the two polymers, including how easily ions could move through it.

One potential advantage of such a system is that it could produce electrolytes that are firmly bonded to the fuel-cell electrodes on either side of them. In conventional fuel cells, the three parts are made separately and then pressed together, and these bonds can be a source of inefficiency. With the new process, the membrane could be formed directly on the electrode, creating a uniform and highly controlled membrane-electrode assembly.

No fuel cell can be 100 percent efficient in converting the fuel's energy to electricity, but the idea is to minimize as much as possible any energy losses in the system. "The majority of the losses are at these interfaces between electrodes and electrolyte", says the lead author of the new paper, Avni Argun, a postdoctoral researcher at MIT working with Paula Hammond, the Bayer Professor of Chemical Engineering. By creating interfaces that are tightly bonded, the efficiency and reliability of the systems can be improved, he says. As a result, he says, "you can reduce the cost, or increase the performance, compared to incumbent technologies."

By improving the efficiency of the system, it should be possible to reduce the amount of platinum needed in the electrodes a major contributor to the current high costs of fuel cells.

The group, which also includes undergraduate student Marie Herring, as well as J. Nathan Ashcraft PhD '09, and two researchers from Penn State, is in the process of licensing the process to a membrane manufacturer, DyPol, that hopes initially to produce membranes for laboratory research, and ultimately for commercial production. "Any promising result we see in the lab can be adapted very quickly for production," Argun says.

The layer-by-layer method was originally developed as a method for applying coatings to other materials. "Three years ago, we never thought this would be a viable method for making membranes," Argun says. While the new membranes still need to be tested in actual fuel cell assemblies, the team is optimistic; "we are more focused now on using this process as a membrane-producing technology," he says. And in addition to fuel cells, they could also be used as electrolytes in advanced batteries and solar cells, he says.

Hammond says the technology can be very quickly scaled up to produce coatings for membranes for fuel cells. Ultimately, she says, membranes produced by this method "have the potential to outperform Nafion," the material currently used in such cells, because of their improved impermeability to methanol.

"This layer-by-layer approach may allow for the rapid synthesis of membranes with unique properties," says John Muldoon, a researcher in the materials research department of the Toyota Research Institute of North America. He adds that it may find a wide range of applications, including in such areas as drug delivery, gas separation, and electrochemical devices such as solar cells, batteries, and fuel cells. But some work remains to be done to make these functions practical, he says: "When applied in the fuel cell, the current technology seems to have the advantage of low fuel crossover" that is, leakage of methanol through the membrane. "However, its conductivity will have to be dramatically improved to have any practical value in fuel cell application."

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Videos/Movies

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Novel nanoparticle made of common mineral may help keep tumor growth at bay February 4th, 2016

New invention revolutionizes heat transport February 1st, 2016

Possible Futures

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Announcements

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Energy

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Canadian physicists discover new properties of superconductivity February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Fuel Cells

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Fuel cell advance: Research team reports success with low-cost nickel-based catalyst January 18th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

Alliances/Trade associations/Partnerships/Distributorships

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

Technical partnership at the top Oxford Instruments and Zurich Instruments announce a technical collaboration for low temperature physics January 7th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

Solar/Photovoltaic

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic