Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NanoInk installs new nanofabrication system at the University of Strathclyde’s Centre for Molecular Nanometrology

The NanoInk DPN 5000 system
The NanoInk DPN 5000 system

Abstract:
Professor Duncan Graham and his research group at The Centre for Molecular Nanometrology at the University of Strathclyde has taken delivery of the DPN 5000 nanolithography tool, NanoInk's latest high precision Dip Pen Nanolithography® (DPN®) system.

NanoInk installs new nanofabrication system at the University of Strathclyde’s Centre for Molecular Nanometrology

Cambridge, UK | Posted on February 16th, 2010

Combining high resolution lithography with world class imaging capability, the new instrument will expand the group's already formidable nanotechnology toolkit and help Graham move towards in vivo imaging approaches based on functional nanoparticles and SERS analysis.

Professor Graham is a recognized leader in the field of Surface Enhanced Raman Spectroscopy (SERS) and an early adopter of DPN technology, driven by the ability of NanoInk's instrumentation to place nanoscale features directly onto existing microstructures. The SERS substrate, Klarite®, is an array of gold-coated, microscale inverted pyramids designed to provide more consistent SERS data. Graham has demonstrated NanoInk's unique ability to precisely and controllably deposit materials to the individual pyramids. This combination of DPN and SERS is one of the few ways of extracting spectroscopic data from nanoscale patterns.

Following this early success with DPN, Graham's lab is applying NanoInk's instruments to the group's other research interests. For example, they are now using the NLP 2000 to create large area nanoscale arrays of biomolecules, nanoparticles and SAM molecules. The team has shown that they can fabricate highly sensitive protein assays, ultimately leading to the development of new devices that could revolutionize the detection of cancer biomarkers.

To learn more about DPN, its application and instrumentation platforms, please visit www.nanonink.net.

####

About NanoInk
NanoInk, Inc. is an emerging growth technology company specializing in nanometer-scale manufacturing and applications development for the life science and semiconductor industries. Using Dip Pen Nanolithography® (DPN®), a patented and proprietary nanofabrication technology, scientists are enabled to rapidly and easily create nanoscale structures from a wide variety of materials. This low cost, easy to use and scalable technique brings sophisticated nanofabrication to the laboratory desktop.

Located in the new Illinois Science + Technology Park, north of Chicago, NanoInk currently has over 140 patents and applications filed worldwide and has licensing agreements with Northwestern University, Stanford University, University of Strathclyde, University of Liverpool, California Institute of Technology and the University of Illinois at Urbana-Champaign. For more information on products and services offered by NanoInk, Inc., see www.nanonink.net

NanoInk, the NanoInk logo, Dip Pen Nanolithography, and DPN are trademarks or registered trademarks of NanoInk, Inc. Klarite is a trademark belonging to D3 Technologies Limited, Scotland.

For more information, please click here

Contacts:
Jezz Leckenby
NetDyaLog
T: +44 (0) 1799 521881
M: +44 (0) 7843 012997

Sarah Kosar Raup
NanoInk
T: +1 847 745 3619

Copyright © NanoInk

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Possible Futures

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Nanomedicine

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Tools

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

Nanobiotechnology

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project