Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Lou's clues lead to nano revelation

Credit: Jun Lou, Rice University
Credit: Jun Lou, Rice University

Gold and silver nanowires bond naturally, stay strong

Lou's clues lead to nano revelation

Houston, TX | Posted on February 15th, 2010

Welding uses heat to join pieces of metal in everything from circuits to skyscrapers. But Rice University researchers have found a way to beat the heat on the nanoscale.

Jun Lou, an assistant professor in mechanical engineering and materials science, and his group have discovered that gold wires between three-billionths and 10-billionths of a meter wide weld themselves together quite nicely - without heat.

They report in today's online edition of the journal Nature Nanotechnology that clean gold nanowires with identical atomic structures will merge into a single wire that loses none of its electrical and mechanical properties. The process works just as well with silver nanowires, which bond with each other or with gold.

This cold-welding process has been observed on the macro scale for decades, Lou said. Clean, flat pieces of similar metals can be made to bond under high pressure and in a vacuum. But only Lou and his colleagues have seen the process happen on the nanoscale, under an electron microscope.

As so often happens in basic research, that's not what they were looking for at all. Lou and Rice graduate student Yang Lu, with collaborators at Sandia National Laboratories and Brown University, were trying to determine the tensile strength of gold nanowires by attaching one end of a wire to a probe in a transmission electron microscope (TEM) and the other to a tiny cantilever spring called an atomic force microscopy (AFM) probe.

Pulling the wire apart gave the team a measurement of its strength. What they didn't expect to see was the broken wire mending itself when its ends or sides touched. Measurements showed the reconnected wire was as strong as before.

"Before you can actually stretch something, you need to clamp it well," said Lou, who received a Young Investigators Research Program grant from the Air Force Office of Sponsored Research last year. "During the manipulation process, we observed this type of welding behavior all the time.

"Initially, we didn't pay attention to it because it didn't seem significant. But after doing a little research on the field, I realized we discovered something that may be useful."

In testing, Lou found the nanowires could be snapped and welded many times. Mended wires never broke again at the same spot; this attests to the strength of the new bond.

The wire's electrical properties also seemed unaffected by repeated breaking and welding. "We'd break a wire and reweld it 11 times and check the electrical properties every time. All the numbers were very close," he said.

The keys to a successful weld are the nanowire's single crystalline structure and matching orientation. "There are a lot of surface atoms, very active, that participate in the diffusion at the nanoscale," Lou said. "We tried gold and silver, and they weld in the same way as long as you satisfy the crystalline-orientation requirement."

Lou sees the discovery opening new paths for researchers looking at molecular-scale electronics. He said teams at Harvard and Northwestern are working on ways to pattern arrays of nanowires, and incorporating cold welding could simplify their processes. "If you're building high-density electronic devices, these kinds of phenomena will be very useful," he said, noting that heat-induced welds on the nanoscale run the risk of damaging the materials' strength or conductivity.

Lou said the discovery has caused a stir among the few he's told. "Different people see different aspects: Electrical engineers see the application side. Theory people see some interesting physics behind this behavior. We hope this paper will encourage more fundamental study."

The paper's co-authors include Jian Yu Huang, a scientist at the Center for Integrated Nanotechnologies at Sandia National Laboratories; and Professor Shouheng Sun and former graduate student Chao Wang of Brown University.

The National Science Foundation and the Air Force Office of Sponsored Research supported the project.

Related materials:

Read the paper here:


This shows two gold nanowires merging in a side-by-side cold welding process, and then separating at a different spot when pulled apart.


This shows two gold nanowires welding when their tips touch.

Both videos credited to Jun Lou/Rice University.


About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

David Ruth
Associate Director for National Media Relations
Rice University
Direct: 713-348-6327
Cell: 612-702-9473

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


'Material universe' yields surprising new particle November 28th, 2015

News and information

'Material universe' yields surprising new particle November 28th, 2015

Iranian Scientists Discover New Catalyst to Remove Pharmaceutical Compounds from Wastewater November 28th, 2015

RAMAN Spectrometry Makes Characterization of Various Nanostructures Possible November 28th, 2015

Nanoparticles Boost Impact Resistance of Special Type of Polymer November 28th, 2015

Possible Futures

'Material universe' yields surprising new particle November 28th, 2015

New 'self-healing' gel makes electronics more flexible November 25th, 2015

Nanocarriers may carry new hope for brain cancer therapy: Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier November 22nd, 2015

Quantum Spin Could Create Unstoppable, One-Dimensional Electron Waves: New theory points the way forward to transform atom-thin materials into powerful conductors November 18th, 2015


New Model Presented to Design, Produce Electronic Nanodevices November 6th, 2015

GLOBALFOUNDRIES Achieves 14nm FinFET Technology Success for Next-Generation AMD Products: Leading-edge foundryís proven silicon technology poised to help enable significant performance and power efficiency improvements for AMDís next-generation products November 6th, 2015

USF team finds new way of computing with interaction-dependent state change of nanomagnets: University of South Florida engineering researchers find nano-scale magnets could compute complex functions significantly faster than conventional computers October 29th, 2015

Nanoquakes probe new 2-dimensional material: Collaborative research between UC Riverside and the University of Augsburg, Germany, opens up new ways of understanding monolayer films for (opto-)electronic applications October 26th, 2015


'Material universe' yields surprising new particle November 28th, 2015

Iranian Scientists Discover New Catalyst to Remove Pharmaceutical Compounds from Wastewater November 28th, 2015

RAMAN Spectrometry Makes Characterization of Various Nanostructures Possible November 28th, 2015

Nanoparticles Boost Impact Resistance of Special Type of Polymer November 28th, 2015


RAMAN Spectrometry Makes Characterization of Various Nanostructures Possible November 28th, 2015

Medical and aerospace electronics powered by Picosun ALD November 26th, 2015

Using light-force to study single molecules November 23rd, 2015

UCLA nanoscientists develop safer, faster way to remove pollutants from water November 23rd, 2015


'Material universe' yields surprising new particle November 28th, 2015

Stanford technology makes metal wires on solar cells nearly invisible to light November 27th, 2015

New 'self-healing' gel makes electronics more flexible November 25th, 2015

GLOBALFOUNDRIES Receives Quality Award from INOVA Semiconductors GmbH November 20th, 2015

Alliances/Trade associations/Partnerships/Distributorships

New EU project designed to link diagnosis and treatment of diseases over the long term: Joint research project aims at the improvement of companion diagnostics and therapy of tumor diseases November 23rd, 2015

EuroCPS, a Horizon 2020 Project, Announces Next Round Of Support for Innovative Companies and their CPS projects November 20th, 2015

Leti and Partners in Silicon Photonics Supply-Chain Project Announce Developments on Three Mature Platforms: PLAT4M Project Focused on Speeding Industrialization of the Technology November 18th, 2015

FEI and ICON Analytical Demonstrate the Power of TEM for Materials and Life Sciences Research: FEIís Talos scanning transmission electron microscope will be available for demos and workshops at the Indian Institute of Science from 23 November to 15 December 2015 November 17th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic