Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Lou's clues lead to nano revelation

Credit: Jun Lou, Rice University
Credit: Jun Lou, Rice University

Abstract:
Gold and silver nanowires bond naturally, stay strong

Lou's clues lead to nano revelation

Houston, TX | Posted on February 15th, 2010

Welding uses heat to join pieces of metal in everything from circuits to skyscrapers. But Rice University researchers have found a way to beat the heat on the nanoscale.

Jun Lou, an assistant professor in mechanical engineering and materials science, and his group have discovered that gold wires between three-billionths and 10-billionths of a meter wide weld themselves together quite nicely - without heat.

They report in today's online edition of the journal Nature Nanotechnology that clean gold nanowires with identical atomic structures will merge into a single wire that loses none of its electrical and mechanical properties. The process works just as well with silver nanowires, which bond with each other or with gold.

This cold-welding process has been observed on the macro scale for decades, Lou said. Clean, flat pieces of similar metals can be made to bond under high pressure and in a vacuum. But only Lou and his colleagues have seen the process happen on the nanoscale, under an electron microscope.

As so often happens in basic research, that's not what they were looking for at all. Lou and Rice graduate student Yang Lu, with collaborators at Sandia National Laboratories and Brown University, were trying to determine the tensile strength of gold nanowires by attaching one end of a wire to a probe in a transmission electron microscope (TEM) and the other to a tiny cantilever spring called an atomic force microscopy (AFM) probe.

Pulling the wire apart gave the team a measurement of its strength. What they didn't expect to see was the broken wire mending itself when its ends or sides touched. Measurements showed the reconnected wire was as strong as before.

"Before you can actually stretch something, you need to clamp it well," said Lou, who received a Young Investigators Research Program grant from the Air Force Office of Sponsored Research last year. "During the manipulation process, we observed this type of welding behavior all the time.

"Initially, we didn't pay attention to it because it didn't seem significant. But after doing a little research on the field, I realized we discovered something that may be useful."

In testing, Lou found the nanowires could be snapped and welded many times. Mended wires never broke again at the same spot; this attests to the strength of the new bond.

The wire's electrical properties also seemed unaffected by repeated breaking and welding. "We'd break a wire and reweld it 11 times and check the electrical properties every time. All the numbers were very close," he said.

The keys to a successful weld are the nanowire's single crystalline structure and matching orientation. "There are a lot of surface atoms, very active, that participate in the diffusion at the nanoscale," Lou said. "We tried gold and silver, and they weld in the same way as long as you satisfy the crystalline-orientation requirement."

Lou sees the discovery opening new paths for researchers looking at molecular-scale electronics. He said teams at Harvard and Northwestern are working on ways to pattern arrays of nanowires, and incorporating cold welding could simplify their processes. "If you're building high-density electronic devices, these kinds of phenomena will be very useful," he said, noting that heat-induced welds on the nanoscale run the risk of damaging the materials' strength or conductivity.

Lou said the discovery has caused a stir among the few he's told. "Different people see different aspects: Electrical engineers see the application side. Theory people see some interesting physics behind this behavior. We hope this paper will encourage more fundamental study."

The paper's co-authors include Jian Yu Huang, a scientist at the Center for Integrated Nanotechnologies at Sandia National Laboratories; and Professor Shouheng Sun and former graduate student Chao Wang of Brown University.

The National Science Foundation and the Air Force Office of Sponsored Research supported the project.

Related materials:

Read the paper here: www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2010.4.html.

Video:

This shows two gold nanowires merging in a side-by-side cold welding process, and then separating at a different spot when pulled apart. www.youtube.com/watch?v=cgsuxEHxFjY

Video:

This shows two gold nanowires welding when their tips touch. www.youtube.com/watch?v=7tMEf1WzUbw

Both videos credited to Jun Lou/Rice University.


####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
Associate Director for National Media Relations
Rice University
Direct: 713-348-6327
Cell: 612-702-9473

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Nanophase to present paper on slurry pH impact at Optics + Photonics conference July 28th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Physics

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

Spintronics just got faster July 20th, 2015

Density-near-zero acoustical metamaterial made in China: Researchers create a tunable membrane 'metamaterial' with near-zero density, effectively recreating the quantum tunneling effect for sound waves July 14th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Tools

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Smarter window materials can control light and energy July 22nd, 2015

Alliances/Trade associations/Partnerships/Distributorships

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Imec and Panasonic Demonstrate Breakthrough RRAM Cell July 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project