Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Lou's clues lead to nano revelation

Credit: Jun Lou, Rice University
Credit: Jun Lou, Rice University

Abstract:
Gold and silver nanowires bond naturally, stay strong

Lou's clues lead to nano revelation

Houston, TX | Posted on February 15th, 2010

Welding uses heat to join pieces of metal in everything from circuits to skyscrapers. But Rice University researchers have found a way to beat the heat on the nanoscale.

Jun Lou, an assistant professor in mechanical engineering and materials science, and his group have discovered that gold wires between three-billionths and 10-billionths of a meter wide weld themselves together quite nicely - without heat.

They report in today's online edition of the journal Nature Nanotechnology that clean gold nanowires with identical atomic structures will merge into a single wire that loses none of its electrical and mechanical properties. The process works just as well with silver nanowires, which bond with each other or with gold.

This cold-welding process has been observed on the macro scale for decades, Lou said. Clean, flat pieces of similar metals can be made to bond under high pressure and in a vacuum. But only Lou and his colleagues have seen the process happen on the nanoscale, under an electron microscope.

As so often happens in basic research, that's not what they were looking for at all. Lou and Rice graduate student Yang Lu, with collaborators at Sandia National Laboratories and Brown University, were trying to determine the tensile strength of gold nanowires by attaching one end of a wire to a probe in a transmission electron microscope (TEM) and the other to a tiny cantilever spring called an atomic force microscopy (AFM) probe.

Pulling the wire apart gave the team a measurement of its strength. What they didn't expect to see was the broken wire mending itself when its ends or sides touched. Measurements showed the reconnected wire was as strong as before.

"Before you can actually stretch something, you need to clamp it well," said Lou, who received a Young Investigators Research Program grant from the Air Force Office of Sponsored Research last year. "During the manipulation process, we observed this type of welding behavior all the time.

"Initially, we didn't pay attention to it because it didn't seem significant. But after doing a little research on the field, I realized we discovered something that may be useful."

In testing, Lou found the nanowires could be snapped and welded many times. Mended wires never broke again at the same spot; this attests to the strength of the new bond.

The wire's electrical properties also seemed unaffected by repeated breaking and welding. "We'd break a wire and reweld it 11 times and check the electrical properties every time. All the numbers were very close," he said.

The keys to a successful weld are the nanowire's single crystalline structure and matching orientation. "There are a lot of surface atoms, very active, that participate in the diffusion at the nanoscale," Lou said. "We tried gold and silver, and they weld in the same way as long as you satisfy the crystalline-orientation requirement."

Lou sees the discovery opening new paths for researchers looking at molecular-scale electronics. He said teams at Harvard and Northwestern are working on ways to pattern arrays of nanowires, and incorporating cold welding could simplify their processes. "If you're building high-density electronic devices, these kinds of phenomena will be very useful," he said, noting that heat-induced welds on the nanoscale run the risk of damaging the materials' strength or conductivity.

Lou said the discovery has caused a stir among the few he's told. "Different people see different aspects: Electrical engineers see the application side. Theory people see some interesting physics behind this behavior. We hope this paper will encourage more fundamental study."

The paper's co-authors include Jian Yu Huang, a scientist at the Center for Integrated Nanotechnologies at Sandia National Laboratories; and Professor Shouheng Sun and former graduate student Chao Wang of Brown University.

The National Science Foundation and the Air Force Office of Sponsored Research supported the project.

Related materials:

Read the paper here: www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2010.4.html.

Video:

This shows two gold nanowires merging in a side-by-side cold welding process, and then separating at a different spot when pulled apart. www.youtube.com/watch?v=cgsuxEHxFjY

Video:

This shows two gold nanowires welding when their tips touch. www.youtube.com/watch?v=7tMEf1WzUbw

Both videos credited to Jun Lou/Rice University.


####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
Associate Director for National Media Relations
Rice University
Direct: 713-348-6327
Cell: 612-702-9473

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Physics

Graphene under pressure August 26th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Possible Futures

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic