Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Digging deep into diamonds

Researchers used a top-down nanofabrication technique to embed color centers into a variety of machined structures. By creating large device arrays rather than just "one-of-a-kind" designs, the realization of quantum networks and systems, which require the integration and manipulation of many devices in parallel, is more likely. Illustration by Jay Penni.
Researchers used a top-down nanofabrication technique to embed color centers into a variety of machined structures. By creating large device arrays rather than just "one-of-a-kind" designs, the realization of quantum networks and systems, which require the integration and manipulation of many devices in parallel, is more likely. Illustration by Jay Penni.

Abstract:
Diamond-based nanowire devices advance quantum science

Digging deep into diamonds

Cambridge, MA | Posted on February 15th, 2010

By creating diamond-based nanowire devices, a team at Harvard University has taken another step toward making applications based on quantum science and technology possible.

The new device offers a bright, stable source of single photons at room temperature, an essential element in making fast and secure computing with light practical.

The finding could lead to a new class of nanostructured diamond devices suitable for quantum communication and computing, as well as advance areas ranging from biological and chemical sensing to scientific imaging.

Published in the Feb. 14 issue of Nature Nanotechnology, researchers led by Marko Loncar, assistant professor of electrical engineering at Harvard's School of Engineering and Applied Sciences (SEAS), found that the performance of a single photon source based on a light-emitting defect (color center) in a diamond could be improved by nanostructuring the diamond and embedding the defect within a diamond nanowire.

Scientists, in fact, first began exploiting the properties of natural diamonds after learning how to manipulate the electron spin, or intrinsic angular momentum, associated with the nitrogen vacancy (NV) color center of the gem. The quantum (qubit) state can be initialized and measured using light.

The color center "communicates" by emitting and absorbing photons. The flow of photons emitted from the color center provides a means to carry the resulting information, making the control, capture, and storage of photons essential for any kind of practical communication or computation. Gathering photons efficiently, however, is difficult since color centers are embedded deep inside the diamond.

"This presents a major problem if you want to interface a color center and integrate it into real-world applications," explains Loncar. "What was missing was an interface that connects the nano-world of a color center with the macro-world of optical fibers and lenses."

The diamond nanowire device offers a solution, providing a natural and efficient interface to probe an individual color center, making it brighter and increasing its sensitivity. The resulting enhanced optical properties increase photon collection by nearly a factor of ten relative to natural diamond devices.

"Our nanowire device can channel the photons that are emitted and direct them in a convenient way," says lead author Thomas Babinec, a graduate student at SEAS.

Further, the diamond nanowire is designed to overcome hurdles that have challenged other state-of-the-art systems — such as those based on fluorescent dye molecules, quantum dots, and carbon nanotubes — as the device can be readily replicated and integrated with a variety of nano-machined structures.

The researchers used a top-down nanofabrication technique to embed color centers into a variety of machined structures. By creating large device arrays rather than just "one-of-a-kind" designs, the realization of quantum networks and systems, which require the integration and manipulation of many devices in parallel, is more likely.

"We consider this an important step in enabling technology towards more practical optical systems based on this exciting material platform," says Loncar. "Starting with these synthetic, nanostructured diamond samples, we can start dreaming about the diamond-based devices and systems that could one day lead to applications in quantum science and technology as well as in sensing and imaging."

Loncar and Babinec's co-authors included research scholar Birgit Hausmann, graduate student Yinan Zhang, and postdoctoral student Mughees Khan, all at SEAS; graduate student Jero Maze in the Department of Physics at Harvard; and faculty member Phil R. Hemmer at Texas A&M University.

The researchers acknowledge the following support: Nanoscale Interdisciplinary Research Team (NIRT) grant from National Science Foundation (NSF), the NSF-funded Nanoscale Science and Engineering Center at Harvard (NSEC); the Defense Advanced Research Projects Agency (DARPA); and a National Defense Science and Engineering Graduate Fellowship and NSF Graduate Fellowship. All devices have been fabricated at the Center for Nanoscale Systems (CNS) at Harvard.

####

About Harvard University
Harvard University is made up of 11 principal academic units — ten faculties and the Radcliffe Institute for Advanced Study. The ten faculties oversee schools and divisions that offer courses and award academic degrees.

For more information, please click here

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Possible Futures

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Nanotubes/Buckyballs/Fullerenes

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Quantum Computing

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

Sensors

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Quantum Dots/Rods

Superfast light source made from artificial atom April 28th, 2016

Quantum dots enhance light-to-current conversion in layered semiconductors: Research demonstrates promise of a new approach for improving solar cells, photocatalysts, light sensors, and other optoelectronic devices April 11th, 2016

Revealing the ion transport at nanoscale March 30th, 2016

Sweet 'quantum dots' light the way for new HIV and Ebola treatment March 15th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

Quantum nanoscience

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

The atom without properties April 22nd, 2016

Changing the color of single photons in a diamond quantum memory April 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic