Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Using Gold Nanoparticles to Hit Cancer Where It Hurts

Abstract:
Taking gold nanoparticles to the cancer cell and hitting them with a laser has been shown to be a promising tool in fighting cancer, but what about cancers that occur in places where a laser light can't reach? Scientists at the Georgia Institute of Technology have shown that by directing gold nanoparticles into the nuclei of cancer cells, they can not only prevent them from multiplying, but can kill them where they lurk. The research appeared as a communication in the February 10 edition of the Journal of the American Chemical Society.

Using Gold Nanoparticles to Hit Cancer Where It Hurts

Atlanta, GA | Posted on February 15th, 2010

"We've developed a system that can kill cancer cells by shining light on gold nanoparticles, but what if the cancer is in a place where we can't shine light on it? To fix that problem, we've decorated the gold with a chemical that brings it inside the nucleus of the cancer cell and stops it from dividing," said Mostafa El-Sayed, Regents professor and director of the Laser Dynamics Laboratory at Georgia Tech.

Once the cell stops dividing, apoptosis sets in and kills the cell.

"In cancer, the nucleus divides much faster than that of a normal cell, so if we can stop it from dividing, we can stop the cancer," said El-Sayed.

The team tested their hypothesis on cells harvested from cancer of the ear, nose and throat. They decorated the cells with an argininge-glycine-aspartic acide petipde (RGD) to bring the gold nano-particles into the cytoplasm of a cancer cell but not the healthy cells and a nuclear localization signal peptide (NLS) to bring it into the nucleus.

In previous work they showed that just bringing the gold into the cytoplasm does nothing. In this current study, they found that implanting the gold into the nucleus effectively kills the cell.

"The cell starts dividing and then it collapses," said El-Sayed. "Once you have a cell with two nuclei, it dies." The gold works by interfering with the cells' DNA, he added. How that works exactly is the subject of a follow-up study.

"Previously, we've shown that we can bring gold nanoparticles into cancer cells and by shining a light on them, can kill the cells. Now we've shown that if we direct those gold nanoparticles into the nucleus, we can kill the cancer cells that are in spots we can't hit with the light," said El-Sayed.

Next the team will test how the treatment works in vivo.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 20,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and minority engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
David Terraso
Communications and Marketing
404-385-2966

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Videos/Movies

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Nanomedicine

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Nanobiotechnology

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project