Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Using Gold Nanoparticles to Hit Cancer Where It Hurts

Abstract:
Taking gold nanoparticles to the cancer cell and hitting them with a laser has been shown to be a promising tool in fighting cancer, but what about cancers that occur in places where a laser light can't reach? Scientists at the Georgia Institute of Technology have shown that by directing gold nanoparticles into the nuclei of cancer cells, they can not only prevent them from multiplying, but can kill them where they lurk. The research appeared as a communication in the February 10 edition of the Journal of the American Chemical Society.

Using Gold Nanoparticles to Hit Cancer Where It Hurts

Atlanta, GA | Posted on February 15th, 2010

"We've developed a system that can kill cancer cells by shining light on gold nanoparticles, but what if the cancer is in a place where we can't shine light on it? To fix that problem, we've decorated the gold with a chemical that brings it inside the nucleus of the cancer cell and stops it from dividing," said Mostafa El-Sayed, Regents professor and director of the Laser Dynamics Laboratory at Georgia Tech.

Once the cell stops dividing, apoptosis sets in and kills the cell.

"In cancer, the nucleus divides much faster than that of a normal cell, so if we can stop it from dividing, we can stop the cancer," said El-Sayed.

The team tested their hypothesis on cells harvested from cancer of the ear, nose and throat. They decorated the cells with an argininge-glycine-aspartic acide petipde (RGD) to bring the gold nano-particles into the cytoplasm of a cancer cell but not the healthy cells and a nuclear localization signal peptide (NLS) to bring it into the nucleus.

In previous work they showed that just bringing the gold into the cytoplasm does nothing. In this current study, they found that implanting the gold into the nucleus effectively kills the cell.

"The cell starts dividing and then it collapses," said El-Sayed. "Once you have a cell with two nuclei, it dies." The gold works by interfering with the cells' DNA, he added. How that works exactly is the subject of a follow-up study.

"Previously, we've shown that we can bring gold nanoparticles into cancer cells and by shining a light on them, can kill the cells. Now we've shown that if we direct those gold nanoparticles into the nucleus, we can kill the cancer cells that are in spots we can't hit with the light," said El-Sayed.

Next the team will test how the treatment works in vivo.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 20,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and minority engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
David Terraso
Communications and Marketing
404-385-2966

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Videos/Movies

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Nanoparticles get a magnetic handle: New method produces particles that can glow with color-coded light and be manipulated with magnets October 9th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Announcements

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Nanobiotechnology

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE