Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UNH Chemists Create Molecule With Promising Semiconductor Properties

Abstract:
A team of chemists from the University of New Hampshire has synthesized the first-ever stable derivative of nonacene, creating a compound that holds significant promise in the manufacture of flexible organic electronics such as large displays, solar cells and radio frequency identification tags.

UNH Chemists Create Molecule With Promising Semiconductor Properties

Durham, NH | Posted on February 13th, 2010

The team, led by professor of organic chemistry and materials science Glen Miller and including two UNH undergraduates, published their findings in January 2010 in the Journal of the American Chemical Society.

Nonacene, a compound with nine rings of benzene fused in a linear fashion, belongs to a class of organic semiconductors called acenes, widely recognized to be among the very best in terms of electronic performance. Yet they are highly unstable - they oxidize rapidly.

"We have known that nonacene would have very desirable electronic properties, but it was just a tease, because you couldn't make it, you couldn't use it," says Miller, who has been working to prepare large acenes since 2007.

Miller and his team - research scientist Irvinder Kaur, postdoctoral fellow Mikael Jazdzyk, and UNH seniors Polina Prusevich and Nathan Stein - built the large nonacene derivative from smaller pieces, the way one might build a Lego structure. The key to the molecule's stability is the addition of arylthio functional groups, stable collections of atoms that contain sulfur.

"The skeleton of the molecule is still there, but it's got additional functional groups attached to the skeleton," says Miller. This not only made the derivative stable, it also made it soluble, further enhancing its usefulness.

Nonacenes hold promise for further development of flexible organic electronic devices: computer displays so thin they could be rolled up or even worn. Miller notes that the military is interested in the technology that would allow for chameleon-like camouflage clothing that could change with the environment. Organic solar cells are another potential application of nonacenes; such cells could cut the cost of solar power by making use of inexpensive organic molecules rather than the expensive crystalline silicon that is used in most solar cells.

While Miller notes that his team's work is but a first step toward creating stable nonacene devices, "these compounds push all of these technologies further."

"Before our work, the thought of preparing flexible organic electronic devices using nonacene or a nonacene derivative was just a dream," he adds. "With this major step forward, we are much closer to realizing the dream."

The complete paper, "Design, Synthesis, and Characterization of a Persistent Nonacene Derivative", is available at the Journal of the American Chemical Society Web site:

pubs.acs.org/doi/full/10.1021/ja9095472.

Funding was provided by the National Science Foundation through the Nanoscale Science & Engineering Center for High-Rate Nanomanufacturing.

####

About University of New Hampshire
The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,200 graduate students.

For more information, please click here

Contacts:
Glen Miller
603-862-2456

Copyright © University of New Hampshire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Arrowhead Presents Promising Preclinical Data on Development of ARO-AAT for Treatment of Alpha-1 Liver Disease at Liver Meeting(R) 2017 October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Display technology/LEDs/SS Lighting/OLEDs

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Possible Futures

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Arrowhead Presents Promising Preclinical Data on Development of ARO-AAT for Treatment of Alpha-1 Liver Disease at Liver Meeting(R) 2017 October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project