Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > UNH Chemists Create Molecule With Promising Semiconductor Properties

Abstract:
A team of chemists from the University of New Hampshire has synthesized the first-ever stable derivative of nonacene, creating a compound that holds significant promise in the manufacture of flexible organic electronics such as large displays, solar cells and radio frequency identification tags.

UNH Chemists Create Molecule With Promising Semiconductor Properties

Durham, NH | Posted on February 13th, 2010

The team, led by professor of organic chemistry and materials science Glen Miller and including two UNH undergraduates, published their findings in January 2010 in the Journal of the American Chemical Society.

Nonacene, a compound with nine rings of benzene fused in a linear fashion, belongs to a class of organic semiconductors called acenes, widely recognized to be among the very best in terms of electronic performance. Yet they are highly unstable - they oxidize rapidly.

"We have known that nonacene would have very desirable electronic properties, but it was just a tease, because you couldn't make it, you couldn't use it," says Miller, who has been working to prepare large acenes since 2007.

Miller and his team - research scientist Irvinder Kaur, postdoctoral fellow Mikael Jazdzyk, and UNH seniors Polina Prusevich and Nathan Stein - built the large nonacene derivative from smaller pieces, the way one might build a Lego structure. The key to the molecule's stability is the addition of arylthio functional groups, stable collections of atoms that contain sulfur.

"The skeleton of the molecule is still there, but it's got additional functional groups attached to the skeleton," says Miller. This not only made the derivative stable, it also made it soluble, further enhancing its usefulness.

Nonacenes hold promise for further development of flexible organic electronic devices: computer displays so thin they could be rolled up or even worn. Miller notes that the military is interested in the technology that would allow for chameleon-like camouflage clothing that could change with the environment. Organic solar cells are another potential application of nonacenes; such cells could cut the cost of solar power by making use of inexpensive organic molecules rather than the expensive crystalline silicon that is used in most solar cells.

While Miller notes that his team's work is but a first step toward creating stable nonacene devices, "these compounds push all of these technologies further."

"Before our work, the thought of preparing flexible organic electronic devices using nonacene or a nonacene derivative was just a dream," he adds. "With this major step forward, we are much closer to realizing the dream."

The complete paper, "Design, Synthesis, and Characterization of a Persistent Nonacene Derivative", is available at the Journal of the American Chemical Society Web site:

pubs.acs.org/doi/full/10.1021/ja9095472.

Funding was provided by the National Science Foundation through the Nanoscale Science & Engineering Center for High-Rate Nanomanufacturing.

####

About University of New Hampshire
The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,200 graduate students.

For more information, please click here

Contacts:
Glen Miller
603-862-2456

Copyright © University of New Hampshire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Possible Futures

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Chip Technology

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Announcements

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Energy

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Solar/Photovoltaic

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic