Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UNH Chemists Create Molecule With Promising Semiconductor Properties

Abstract:
A team of chemists from the University of New Hampshire has synthesized the first-ever stable derivative of nonacene, creating a compound that holds significant promise in the manufacture of flexible organic electronics such as large displays, solar cells and radio frequency identification tags.

UNH Chemists Create Molecule With Promising Semiconductor Properties

Durham, NH | Posted on February 13th, 2010

The team, led by professor of organic chemistry and materials science Glen Miller and including two UNH undergraduates, published their findings in January 2010 in the Journal of the American Chemical Society.

Nonacene, a compound with nine rings of benzene fused in a linear fashion, belongs to a class of organic semiconductors called acenes, widely recognized to be among the very best in terms of electronic performance. Yet they are highly unstable - they oxidize rapidly.

"We have known that nonacene would have very desirable electronic properties, but it was just a tease, because you couldn't make it, you couldn't use it," says Miller, who has been working to prepare large acenes since 2007.

Miller and his team - research scientist Irvinder Kaur, postdoctoral fellow Mikael Jazdzyk, and UNH seniors Polina Prusevich and Nathan Stein - built the large nonacene derivative from smaller pieces, the way one might build a Lego structure. The key to the molecule's stability is the addition of arylthio functional groups, stable collections of atoms that contain sulfur.

"The skeleton of the molecule is still there, but it's got additional functional groups attached to the skeleton," says Miller. This not only made the derivative stable, it also made it soluble, further enhancing its usefulness.

Nonacenes hold promise for further development of flexible organic electronic devices: computer displays so thin they could be rolled up or even worn. Miller notes that the military is interested in the technology that would allow for chameleon-like camouflage clothing that could change with the environment. Organic solar cells are another potential application of nonacenes; such cells could cut the cost of solar power by making use of inexpensive organic molecules rather than the expensive crystalline silicon that is used in most solar cells.

While Miller notes that his team's work is but a first step toward creating stable nonacene devices, "these compounds push all of these technologies further."

"Before our work, the thought of preparing flexible organic electronic devices using nonacene or a nonacene derivative was just a dream," he adds. "With this major step forward, we are much closer to realizing the dream."

The complete paper, "Design, Synthesis, and Characterization of a Persistent Nonacene Derivative", is available at the Journal of the American Chemical Society Web site:

pubs.acs.org/doi/full/10.1021/ja9095472.

Funding was provided by the National Science Foundation through the Nanoscale Science & Engineering Center for High-Rate Nanomanufacturing.

####

About University of New Hampshire
The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,200 graduate students.

For more information, please click here

Contacts:
Glen Miller
603-862-2456

Copyright © University of New Hampshire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Possible Futures

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Chip Technology

Researchers use sound waves to advance optical communication January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Announcements

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Energy

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Solar/Photovoltaic

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project