Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Switched Off

Take the tube: The title conjugate provides spatiotemporal information of ATP in living cells by a two-step fluorescence quenching mechanism. OxyLrin, which is generated enzymatically in the reaction between ATP and D-luciferin (Lrin), is adsorbed onto the nanotubes and quenches their fluorescence (see picture). The sensor is highly selective toward ATP.
Take the tube: The title conjugate provides spatiotemporal information of ATP in living cells by a two-step fluorescence quenching mechanism. OxyLrin, which is generated enzymatically in the reaction between ATP and D-luciferin (Lrin), is adsorbed onto the nanotubes and quenches their fluorescence (see picture). The sensor is highly selective toward ATP.

Abstract:
Sensitive, selective, and resolved in time and space: ATP detection in living cells with carbon nanotubes and luciferase

Switched Off

Weinheim, Germany | Posted on February 12th, 2010

All living cells require a fuel to function: adenosine triphosphate (ATP), the cell "gasoline". Detecting ATP within cells can help researchers observe energetic physiological processes, such as signal cascades or transport processes. Furthermore, ATP depletion is related to certain diseases, such as Parkinson's disease and ischemia (restricted blood flow within tissues). A team led by Michael S. Strano at the Massachusetts Institute of Technology in Cambridge (USA) has now developed a more sensitive, higher-resolution, and more robust method for the detection of ATP. As the scientists report in the journal Angewandte Chemie, the method is based on carbon nanotubes.

ATP is usually detected by means of the luciferase assay. Luciferases are enzymes that are used in fireflies and other bioluminescent organisms to produce light. They use oxygen to convert a substrate called luciferin into oxyluciferin, which then reacts further to produce light. Certain luciferases use ATP for their reactions. The luciferase assay currently in use is complex, time-consuming, and suffers from a poor signal-to-noise ratio.

The MIT team has now developed a variation of the luciferase protocol: They attached the luciferase to carbon nanotubes. In this form the enzyme is easily taken up by cells. In the presence of luciferin and ATP, oxyluciferin is formed as usual, which causes fluorescence. What is interesting in this case is that carbon nanotubes normally fluoresce in the near infrared (nIR) spectral region; however this is proportionately extinguished by the addition of ATP to the luciferase reaction. Why? "As it is formed, the product oxyluciferin attaches itself firmly to the nanotube," explains Strano. "Electrons are transferred from the nanotube to the oxyluciferin so that the carbon nanotube itself can no longer fluoresce." The reduction in nIR fluorescence is easy to detect and serves as an indicator of the ATP concentration.

"Our new sensor is very selective for ATP," continues Strano. "We were able to use it to observe the change in ATP concentration over time and space in a cell culture."

Author: Michael S. Strano, Massachusetts Institute of Technology, Cambridge (USA), web.mit.edu/stranogroup/

Title: A Luciferase/Single-walled Carbon Nanotube Conjugate for Near-Infrared Fluorescent Detection of Cellular ATP

Angewandte Chemie International Edition 2010, 49, No. 8, 1456-1459, Permalink: dx.doi.org/10.1002/anie.200906251

####

About Wiley InterScience
Wiley InterScience (www.interscience.wiley.com) provides access to over 3 million articles across nearly 1500 journals and 7000 Online Books and major reference works. It also holds industry leading databases such as The Cochrane Library, chemistry databases and the acclaimed Current Protocols laboratory manuals.

Wiley InterScience is one of the world's premiere resources for study, teaching and advanced research.

For more information, please click here

Contacts:
Editorial office


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Wiley InterScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies Names NanoSperse as A SWeNT Certified Compounder July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

Nanomedicine

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Arrowhead to Report Fiscal 2014 Third Quarter Financial Results- Conference Call Scheduled for Tuesday, August 12, 2014 - July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Sensors

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Nanobiotechnology

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE