Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Smaller, less expensive deposition systems are enabling biomedical and life science labs to undertake parylene experimentation

February 8th, 2010

Smaller, less expensive deposition systems are enabling biomedical and life science labs to undertake parylene experimentation

Abstract:
Yu-Chong Tai, Ph.D., professor of electrical engineering and bioengineering at the California Institute of Technology (Caltech), has been using parylene for a range of applications to create unique nano-devices.

In his cleanroom laboratory, Tai can deposit a variety of standard thin-film materials and add parylene to the mix. This allows him to combine mono-layers of various types of materials to assemble interesting composite structures.

Basically, Tai is working with "combined semiconductor" deposition technology on a laboratory scale and adding the unique properties of parylene. Laboratory systems provide the same process as basic semiconductor deposition, only on a convenient, research-based level.

For the past ten years, the National Institutes of Health (NIH) has been funding Tai to make micro implants made partly from parylene. These devices, which differ from traditional implants such as pacemakers, have been implanted into the brain for neurostimulation and recording.

Cornell University is also involved in research using parylene materials. The Cornell NanoScale Science and Technology Facility (CNF) focuses on a wide range of semiconductor processing equipment for building nano-devices.

Supported by the National Science Foundation (NSF), the National Nanotechnology Infrastructure Network (NNIN)—an integrated partnership of fourteen user facilities, including the CNF—provides superior opportunities for nanoscience and nanotechnology research. The network provides support in nanoscale fabrication, synthesis, characterization, modeling, design, computation, and training in an open, hands-on environment available to all qualified users.

Source:
laboratoryequipment.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Lomiko Signs Licensing Agreement to Produce and Supply Power Converter Systems to E-Commerce Customers October 29th, 2014

Laboratories

Tiny carbon nanotube pores make big impact October 29th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Thin films

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Nanoelectronics

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Announcements

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Tools

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nanobiotechnology

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE