Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Growing Cartilage -- No Easy Task

Abstract:
New nanoscopic material enables cartilage to do what it doesn't do naturally

Growing Cartilage -- No Easy Task

Evanston, IL | Posted on February 8th, 2010

Northwestern University researchers are the first to design a bioactive nanomaterial that promotes the growth of new cartilage in vivo and without the use of expensive growth factors. Minimally invasive, the therapy activates the bone marrow stem cells and produces natural cartilage. No conventional therapy can do this.

The results will be published online the week of Feb. 1 by the Proceedings of the National Academy of Sciences (PNAS).

"Unlike bone, cartilage does not grow back, and therefore clinical strategies to regenerate this tissue are of great interest," said Samuel I. Stupp, senior author, Board of Trustees Professor of Chemistry, Materials Science and Engineering, and Medicine, and director of the Institute for BioNanotechnology in Medicine. Countless people -- amateur athletes, professional athletes and people whose joints have just worn out -- learn this all too well when they bring their bad knees, shoulders and elbows to an orthopaedic surgeon.

Damaged cartilage can lead to joint pain and loss of physical function and eventually to osteoarthritis, a disorder with an estimated economic impact approaching $65 billion in the United States. With an aging and increasingly active population, this figure is expected to grow.

"Cartilage does not regenerate in adults. Once you are fully grown you have all the cartilage you'll ever have," said first author Ramille N. Shah, assistant professor of materials science and engineering at the McCormick School of Engineering and Applied Science and assistant professor of orthopaedic surgery at the Feinberg School of Medicine. Shah is also a resident faculty member at the Institute for BioNanotechnology in Medicine.

Type II collagen is the major protein in articular cartilage, the smooth, white connective tissue that covers the ends of bones where they come together to form joints.

"Our material of nanoscopic fibers stimulates stem cells present in bone marrow to produce cartilage containing type II collagen and repair the damaged joint," Shah said. "A procedure called microfracture is the most common technique currently used by doctors, but it tends to produce a cartilage having predominantly type I collagen which is more like scar tissue."

The Northwestern gel is injected as a liquid to the area of the damaged joint, where it then self-assembles and forms a solid. This extracellular matrix, which mimics what cells usually see, binds by molecular design one of the most important growth factors for the repair and regeneration of cartilage. By keeping the growth factor concentrated and localized, the cartilage cells have the opportunity to regenerate.

Together with Nirav A. Shah, a sports medicine orthopaedic surgeon and former orthopaedic resident at Northwestern, the researchers implanted their nanofiber gel in an animal model with cartilage defects.

The animals were treated with microfracture, where tiny holes are made in the bone beneath the damaged cartilage to create a new blood supply to stimulate the growth of new cartilage. The researchers tested various combinations: microfracture alone; microfracture and the nanofiber gel with growth factor added; and microfracture and the nanofiber gel without growth factor added.

They found their technique produced much better results than the microfracture procedure alone and, more importantly, found that addition of the expensive growth factor was not required to get the best results. Instead, because of the molecular design of the gel material, growth factor already present in the body is enough to regenerate cartilage.

The matrix only needed to be present for a month to produce cartilage growth. The matrix, based on self-assembling molecules known as peptide amphiphiles, biodegrades into nutrients and is replaced by natural cartilage.

The PNAS paper is titled "Supramolecular Design of Self-assembling Nanofibers for Cartilage Regeneration." In addition to Stupp, Ramille Shah and Nirav Shah, other authors of the paper are Marc M. Del Rosario Lim, Caleb Hsieh and Gordon Nuber, all from Northwestern.

The National Institutes of Health and the company Nanotope supported the research.

####

About Northwestern University
Northwestern University combines innovative teaching and pioneering research in a highly collaborative environment that transcends traditional academic boundaries. It provides students and faculty exceptional opportunities for intellectual, personal and professional growth in a setting enhanced by the richness of Chicago.

For more information, please click here

Contacts:
Megan Fellman

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Possible Futures

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Nanobiotechnology

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project