Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Growing Cartilage -- No Easy Task

Abstract:
New nanoscopic material enables cartilage to do what it doesn't do naturally

Growing Cartilage -- No Easy Task

Evanston, IL | Posted on February 8th, 2010

Northwestern University researchers are the first to design a bioactive nanomaterial that promotes the growth of new cartilage in vivo and without the use of expensive growth factors. Minimally invasive, the therapy activates the bone marrow stem cells and produces natural cartilage. No conventional therapy can do this.

The results will be published online the week of Feb. 1 by the Proceedings of the National Academy of Sciences (PNAS).

"Unlike bone, cartilage does not grow back, and therefore clinical strategies to regenerate this tissue are of great interest," said Samuel I. Stupp, senior author, Board of Trustees Professor of Chemistry, Materials Science and Engineering, and Medicine, and director of the Institute for BioNanotechnology in Medicine. Countless people -- amateur athletes, professional athletes and people whose joints have just worn out -- learn this all too well when they bring their bad knees, shoulders and elbows to an orthopaedic surgeon.

Damaged cartilage can lead to joint pain and loss of physical function and eventually to osteoarthritis, a disorder with an estimated economic impact approaching $65 billion in the United States. With an aging and increasingly active population, this figure is expected to grow.

"Cartilage does not regenerate in adults. Once you are fully grown you have all the cartilage you'll ever have," said first author Ramille N. Shah, assistant professor of materials science and engineering at the McCormick School of Engineering and Applied Science and assistant professor of orthopaedic surgery at the Feinberg School of Medicine. Shah is also a resident faculty member at the Institute for BioNanotechnology in Medicine.

Type II collagen is the major protein in articular cartilage, the smooth, white connective tissue that covers the ends of bones where they come together to form joints.

"Our material of nanoscopic fibers stimulates stem cells present in bone marrow to produce cartilage containing type II collagen and repair the damaged joint," Shah said. "A procedure called microfracture is the most common technique currently used by doctors, but it tends to produce a cartilage having predominantly type I collagen which is more like scar tissue."

The Northwestern gel is injected as a liquid to the area of the damaged joint, where it then self-assembles and forms a solid. This extracellular matrix, which mimics what cells usually see, binds by molecular design one of the most important growth factors for the repair and regeneration of cartilage. By keeping the growth factor concentrated and localized, the cartilage cells have the opportunity to regenerate.

Together with Nirav A. Shah, a sports medicine orthopaedic surgeon and former orthopaedic resident at Northwestern, the researchers implanted their nanofiber gel in an animal model with cartilage defects.

The animals were treated with microfracture, where tiny holes are made in the bone beneath the damaged cartilage to create a new blood supply to stimulate the growth of new cartilage. The researchers tested various combinations: microfracture alone; microfracture and the nanofiber gel with growth factor added; and microfracture and the nanofiber gel without growth factor added.

They found their technique produced much better results than the microfracture procedure alone and, more importantly, found that addition of the expensive growth factor was not required to get the best results. Instead, because of the molecular design of the gel material, growth factor already present in the body is enough to regenerate cartilage.

The matrix only needed to be present for a month to produce cartilage growth. The matrix, based on self-assembling molecules known as peptide amphiphiles, biodegrades into nutrients and is replaced by natural cartilage.

The PNAS paper is titled "Supramolecular Design of Self-assembling Nanofibers for Cartilage Regeneration." In addition to Stupp, Ramille Shah and Nirav Shah, other authors of the paper are Marc M. Del Rosario Lim, Caleb Hsieh and Gordon Nuber, all from Northwestern.

The National Institutes of Health and the company Nanotope supported the research.

####

About Northwestern University
Northwestern University combines innovative teaching and pioneering research in a highly collaborative environment that transcends traditional academic boundaries. It provides students and faculty exceptional opportunities for intellectual, personal and professional growth in a setting enhanced by the richness of Chicago.

For more information, please click here

Contacts:
Megan Fellman

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Materials/Metamaterials

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE