Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Super material will make lighting cheaper and fully recyclable

Copyright ę 2010 American Chemical Society
Copyright ę 2010 American Chemical Society

Abstract:
With the use of the new super material graphene, Swedish and American researchers have succeeded in producing a new type of lighting component. It is inexpensive to produce and can be fully recycled.

Super material will make lighting cheaper and fully recyclable

Sweden | Posted on February 5th, 2010

The invention, which paves the way for glowing wallpaper made entirely of plastic, for example, is published in the scientific journal ACS Nano by scientists at Link÷ping University and Umeň University, in Sweden, and Rutgers, The State University of New Jersey.

Ultra-thin and electricity-saving organic light diodes, so-called OLEDs, have recently been introduced commercially in mobile phones, cameras, and super-thin TVs. An OLED consists of a light-generating layer of plastic placed between two electrodes, one of which must be transparent.

Today's OLEDs have two drawbacks - they are relatively expensive to produce, and the transparent electrode consists of the metal alloy indium tin oxide. The latter presents a problem because indium is both rare and expensive and moreover is complicated to recycle. Now researchers at Link÷ping and Umeň universities, working with American colleagues, are presenting an alternative to OLEDs, an organic light-emitting electrochemical cell (LEC). It is inexpensive to produce, and the transparent electrode is made of the carbon material graphene.

"This is a major step forward in the development of organic lighting components, from both a technological and an environmental perspective. Organic electronics components promise to become extremely common in exciting new applications in the future, but this can create major recycling problems. By using graphene instead of conventional metal electrodes, components of the future will be much easier to recycle and thereby environmentally attractive," says one of the scientists, Nathaniel Robinson from Link÷ping University.

Since all the LEC's parts can be produced from liquid solutions, it will also be possible to make LECs in a roll-to-roll process on, for example, a printing press in a highly cost-effective way.
"This paves the way for inexpensive production of entirely plastic-based lighting and display components in the form of large flexible sheets. This kind of illumination or display can be rolled up or can be applied as wallpaper or on ceilings," says another of the scientists, Ludvig Edman from Umeň University.

Graphene consists of a single layer of carbon atoms and has many attractive properties as an electronic material. It has high conductivity, is virtually transparent, and can moreover be produced as a solution in the form of graphene oxide.

Researchers all over the world have been trying to replace indium tin oxide for more than 15 years. Indium is in short supply, and the alloy has a complicated life cycle. The raw material for the fully organic and metal-free LEC, on the other hand, is inexhaustible and can be fully recycled - as fuel, for example.

The study is published in the journal ACS Nano and is titled "Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices." The authors are Piotr Matyba, Hisato Yamaguchi, Goki Eda, Manish Chhowalla, Ludvig Edman, and Nathaniel D. Robinson.

Visit pubs.acs.org/doi/abs/10.1021/nn9018569

####

About Umeň University
Umeň University was founded in 1965 and is Sweden's fifth oldest university. Today, we have a strong international and multicultural presence with students, teachers and researchers from all over the world. Our main campus - with its 29,000 students and 4,000 employees - is alive with enthusiasm, creativity and fresh ideas.

We constantly strive towards making it one of Scandinavia's best environments for study and research that meets the challenges of an ever-increasing global society.

Contacts:
Ludvig Edman
professor of physics at
Umeň University
+46 (0)90-7865732 (work)
+46 (0)70-2321240 (mobile)


Nathaniel D. Robinson
associate professor
Link÷ping University
Phone: +46 (0)11-363479

Copyright © Umeň University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Display technology/LEDs/SS Lighting/OLEDs

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

Possible Futures

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Environment

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Nanogate Expands Sustainability Management: Nanogate publishes a statement of compliance with the German Sustainability Code for the first time March 15th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

Alliances/Trade associations/Partnerships/Distributorships

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGMĺs three core sectors March 3rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project