Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticle assembly: Bridging spheres

Fig. 1: Micrograph view through the glass substrate showing the formation of a liquid bridge network during the evaporation of solvent. Reproduced from Ref. 1 © 2009 The American Chemical Society
Fig. 1: Micrograph view through the glass substrate showing the formation of a liquid bridge network during the evaporation of solvent. Reproduced from Ref. 1 © 2009 The American Chemical Society

Abstract:
A lithographic approach based on evaporating solutions makes conducting networks of microwires for electronics

Nanoparticle assembly: Bridging spheres

Singapore | Posted on February 3rd, 2010

A process to rival traditional lithography approaches, and which can be used to create microwire networks, is now a step closer to real applicability in future electronics. By optimizing the processing conditions for ‘evaporative lithography', a research team from Singapore and Australia has maximized the connectivity and conductivity of the microwire networks that conduct electricity1.

"Evaporative lithography could offer a cost-effective and environmentally friendly bench-top alternative to existing lithographic techniques such as photolithography, soft lithography and nanoimprinting," says team member Ivan Vakarelski from the A*STAR Institute of Chemical and Engineering Sciences, Singapore. He explains that the team is aiming primarily at creating large conducting microwire networks that, when deposited onto a glass substrate, could be used as transparent electrodes. These could be an alternative to the industry standard of indium tin oxide coatings, which would help circumvent the high cost and limited supply of indium.

Vakarelski and his co-workers created the microwire networks from solutions of gold nanoparticles of 20 nanometers diameter. As in their earlier work2, they first established a template of much larger latex microparticles on a substrate, then deposited solutions of the nanoparticles on top and allowed them to dry gradually. Surface tension then drove the solution into lines that formed ‘bridges' between neighboring latex particles (Fig. 1). Once the pattern was completely dry and the researchers removed the latex particles, the gold nanoparticles from the solution remained in a network of microwires.

The network pattern depends on the original positioning of the latex particles in the template, allowing different microwire designs to be easily realized. Vakarelski and his co-workers found that the networks can be improved for maximum conductivity and connectivity by adding a surfactant and treating the latex spheres with heat and oxygen plasma. They believe that these factors act to stabilize the latex spheres and the liquid bridges during drying to encourage full microwire networks to form.

Vakarelski is optimistic that the technique will progress to a level such that it will be used in manufacturing processes. He explains that this can be achieved by adapting the template production and expanding the size capacity to the scale of silicon wafers used in electronics.

The team's approach potentially has broader applications beyond electronics. "We can create special functional networks using semiconducting particles," Vakarelski says. Other examples include magnetic particles, carbon nanotubes, DNA, proteins and other macromolecules and even mixtures of these to create networks and nodes with desired properties.

The A*STAR affiliated authors in this highlight are from the Institute of Chemical and Engineering Sciences and the Institute of Materials Research and Engineering.

Reference

1. Vakarelski, I.U., Kwek, J.W., Tang, X.S., O'Shea, S.J. & Chan, D.Y.C. Particulate templates and ordered liquid bridge networks in evaporative lithography. Langmuir 25, 13311-13314 (2009).
2. Vakarelski, I.U., Chan, D.Y.C., Nonoguchi, T., Shinto, H. & Higashitani, K. Assembly of gold nanoparticles into microwire networks induced by drying liquid bridges. Physical Review Letters 102, 058303 (2009).

####

About A*STAR
A*STAR Research is an online and print publication highlighting some of the best research and technological developments at the research institutes of Singapore’s Agency for Science, Technology and Research (A*STAR). Established in 2002, A*STAR has thrived as a global research organization with a principal mission of fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR currently oversees 14 research institutes as well as 7 consortia and centers located in the Biopolis and Fusionopolis complexes and the vicinity, and supports extramural research in collaboration with universities, hospital research centers and other local and international partners. The various A*STAR institutes are involved in research in a wide range of scientific fields, coordinated and funded by Singapore’s Biomedical Research Council (BMRC) and Science and Engineering Research Council (SERC).

For more information, please click here

Copyright © A*STAR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Possible Futures

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Chip Technology

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Announcements

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Environment

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project