Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New knowledge about the deformation of nanocrystals offers new tools for nanotechnology

Abstract:
With new, advanced equipment, scientists at Ris° DTU have shown that materials to produce micro-and nanocomponents react very differently depending on whether crystals are large or small. This research creates important knowledge that can be used to develop technologies aimed at the nanoproduction of micro-electro-mechanical systems such as digital microphones in mobile phones, miniature pressure sensors in water pumps and acceleration sensors in airbags.

New knowledge about the deformation of nanocrystals offers new tools for nanotechnology

Denmark | Posted on January 30th, 2010

The nanotechnology toolbox is expanding continuously and the material for nanocomponents is a chapter by itself, because materials at nanoscale often react quite differently than materials at large scale. Therefore it is necessary to know what happens when you squeeze, flatten and stamp out metals for nanocomponents. Otherwise, the finished component may not be functioning as it should.

Using transmission electron microscopy (TEM) and cooperating with research institutions in China and the USA, Ris° DTU has looked into what happens when you deform crystals of nanosize from the metal titanium. At this scale the size of the titanium crystals determines the behaviour of the metal during mechanical treatment. Titanium crystals of a certain size are deformed in a way that each atom is systematically displaced in proportion to the neighbouring atoms, which results in a macroscopic deformation. This process is called 'deformation twinning'. When the titanium crystals become smaller, they are much more difficult to deform. However, this only applies to a certain lower limit.

When titanium crystals become smaller than 1 micrometer (0.001 mm), they are deformed in the same way as very large crystals. This kind of deformation is called 'dislocation plasticity'. The discovery has great significance for how to produce nanocomponents of metal and ceramics in order to obtain the desired properties in a final component.

With support from the Danish Council for Independent Research, the Danish Research Council for Nature and Universe (FNU), Ris° National Laboratory for Sustainable Energy, DTU has acquired new, advanced equipment to study nanocrystals of metal while they are being deformed in an electron microscope. This equipment has recently been developed by the company Hysitron Incorporated in the USA. The new equipment allows scientists to study in very fine detail structural changes in the TEM while they, with great precision, can deform the metal crystals, and thereby obtain a detailed knowledge of the surprising new nano phenomena.

The results will provide the technologies for nano production with important new knowledge. They were published in the world-renowned journal Nature on 21 January (Nature 21 January 2010, Volume 463, Number 7279 pp269-392).

Senior Scientist Xiaoxu Huang from the Materials Research Division at Ris° DTU participated in the collaboration. The Chinese partner was Xi'an Jiaotong University and the US partners were the University of Pennsylvania, The John Hopkins University and Hysitron Incorporated.

####

For more information, please click here

Contacts:
Xiaoxu Huang
Materials Research (AFM)
Dir tel+45 4677 5755

Copyright © Ris° DTU

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32áTesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQÖ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Al˙ its Alan T. Waterman awardee for 2015: Al˙ is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32áTesla magnet program April 17th, 2015

The National Science Foundation names engineering researcher Andrea Al˙ its Alan T. Waterman awardee for 2015: Al˙ is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

MEMS

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

STMicroelectronics Executive Vice-President Benedetto Vigna Awarded IEEE Frederik Philips Award March 12th, 2015

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Sensors

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

New Biosensor Increases Possibility to Predict Potential of Heart Diseases April 12th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32áTesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Tools

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32áTesla magnet program April 17th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Combined effort for structural determination April 15th, 2015

JPK reports on the use of the NanoWizard« 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE