Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New knowledge about the deformation of nanocrystals offers new tools for nanotechnology

Abstract:
With new, advanced equipment, scientists at Risø DTU have shown that materials to produce micro-and nanocomponents react very differently depending on whether crystals are large or small. This research creates important knowledge that can be used to develop technologies aimed at the nanoproduction of micro-electro-mechanical systems such as digital microphones in mobile phones, miniature pressure sensors in water pumps and acceleration sensors in airbags.

New knowledge about the deformation of nanocrystals offers new tools for nanotechnology

Denmark | Posted on January 30th, 2010

The nanotechnology toolbox is expanding continuously and the material for nanocomponents is a chapter by itself, because materials at nanoscale often react quite differently than materials at large scale. Therefore it is necessary to know what happens when you squeeze, flatten and stamp out metals for nanocomponents. Otherwise, the finished component may not be functioning as it should.

Using transmission electron microscopy (TEM) and cooperating with research institutions in China and the USA, Risø DTU has looked into what happens when you deform crystals of nanosize from the metal titanium. At this scale the size of the titanium crystals determines the behaviour of the metal during mechanical treatment. Titanium crystals of a certain size are deformed in a way that each atom is systematically displaced in proportion to the neighbouring atoms, which results in a macroscopic deformation. This process is called 'deformation twinning'. When the titanium crystals become smaller, they are much more difficult to deform. However, this only applies to a certain lower limit.

When titanium crystals become smaller than 1 micrometer (0.001 mm), they are deformed in the same way as very large crystals. This kind of deformation is called 'dislocation plasticity'. The discovery has great significance for how to produce nanocomponents of metal and ceramics in order to obtain the desired properties in a final component.

With support from the Danish Council for Independent Research, the Danish Research Council for Nature and Universe (FNU), Risø National Laboratory for Sustainable Energy, DTU has acquired new, advanced equipment to study nanocrystals of metal while they are being deformed in an electron microscope. This equipment has recently been developed by the company Hysitron Incorporated in the USA. The new equipment allows scientists to study in very fine detail structural changes in the TEM while they, with great precision, can deform the metal crystals, and thereby obtain a detailed knowledge of the surprising new nano phenomena.

The results will provide the technologies for nano production with important new knowledge. They were published in the world-renowned journal Nature on 21 January (Nature 21 January 2010, Volume 463, Number 7279 pp269-392).

Senior Scientist Xiaoxu Huang from the Materials Research Division at Risø DTU participated in the collaboration. The Chinese partner was Xi'an Jiaotong University and the US partners were the University of Pennsylvania, The John Hopkins University and Hysitron Incorporated.

####

For more information, please click here

Contacts:
Xiaoxu Huang
Materials Research (AFM)
Dir tel+45 4677 5755

Copyright © Risø DTU

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Tools

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project