Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > How many argon atoms can fit on the surface of a carbon nanotube?

Abstract:
Scientists have devised a new way to explore how such phase transitions function in less than three dimensions and at the level of just a few atoms.

How many argon atoms can fit on the surface of a carbon nanotube?

Seattle, WA | Posted on January 30th, 2010

Phase transitions -- changes of matter from one state to another without altering its chemical makeup -- are an important part of life in our three-dimensional world. Water falls to the ground as snow, melts to a liquid and eventually vaporizes back to the clouds to begin the cycle anew.

Now a team of scientists has devised a new way to explore how such phase transitions function in less than three dimensions and at the level of just a few atoms. They hope the technique will be useful to test aspects of what until now has been purely theoretical physics, and they hope it also might have practical applications for sensing conditions at very tiny scales, such as in a cell membrane.

They worked with single-walled carbon nanotubes, extremely thin, hollow graphite structures that can be so tiny that they are nearly one-dimensional, to study the phase transition behavior of argon and krypton atoms.

"The physics can be quite different in fewer than three dimensions," said David Cobden, an associate professor of physics at the University of Washington and corresponding author of a paper describing the work published Friday (Jan. 29) in Science.

Co-authors, all from the UW, are Zenghui Wang, Jiang Wei, Peter Morse, J. Gregory Dash and Oscar Vilches.

For their observations, the group used carbon nanotubes, microscopic cylinders that have some thickness but are very close to being one-dimensional.

Phase transitions change the density of atoms. In the vapor form, there are fewer atoms and they are loosely packed. Liquid has more atoms and they are more tightly packed. The solid is a crystal formed of very tightly packed atoms. To determine the phase of the argon and krypton atoms, the researchers used the carbon nanotube much like a guitar string stretched over a fret. A nearby piece of conducting metal applied an electrical force to oscillate the string, and the scientists measured the current to "listen" as the vibration frequency changed -- a greater mass of atoms sticking to the nanotube surface produced a lower frequency.

"You listen to this nano guitar and as the pitch goes down you know there are more atoms sticking to the surface," Cobden said. "In principle you can hear one atom landing on the tube -- it's that sensitive."

The researchers also found that the nanotube's electrical resistance changed when krypton atoms stuck to the surface.

In the future, the scientists hope to be able to see how the atoms, as they populate the carbon nanotube, react to each other through various phase transitions, and also how they interact with the pure carbon graphite of the nanotube. They expect to see some significant differences in experiments approaching one dimension from those in two or three dimensions.

"For example, matter can freeze in 3-D and in 2-D, but theoretically it should not freeze in 1-D," Cobden said.

Besides providing a test bed for physics theories, the work also could be useful for sensing applications, such as nanoscale measurements in various fluid environments, examining functions within cell membranes or probing within nerves.

"Nanotubes allow you to probe things at the subcellular level," Cobden said.

The work was funded by the National Science Foundation, the American Chemical Society Petroleum Research Fund, the UW Royalty Research Fund and the UW University Initiatives Fund.

####

About University of Washington
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

For more information, please click here

Contacts:
David Cobden
206-372-2456
206-543-2686

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Physics

Canadian physicists discover new properties of superconductivity February 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Possible Futures

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Nanotubes/Buckyballs/Fullerenes

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanostructural Changes in Solar Cells to Increase Their Efficiency January 28th, 2016

Nanomedicine

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Discoveries

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Announcements

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Nanobiotechnology

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic