Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > How many argon atoms can fit on the surface of a carbon nanotube?

Abstract:
Scientists have devised a new way to explore how such phase transitions function in less than three dimensions and at the level of just a few atoms.

How many argon atoms can fit on the surface of a carbon nanotube?

Seattle, WA | Posted on January 30th, 2010

Phase transitions -- changes of matter from one state to another without altering its chemical makeup -- are an important part of life in our three-dimensional world. Water falls to the ground as snow, melts to a liquid and eventually vaporizes back to the clouds to begin the cycle anew.

Now a team of scientists has devised a new way to explore how such phase transitions function in less than three dimensions and at the level of just a few atoms. They hope the technique will be useful to test aspects of what until now has been purely theoretical physics, and they hope it also might have practical applications for sensing conditions at very tiny scales, such as in a cell membrane.

They worked with single-walled carbon nanotubes, extremely thin, hollow graphite structures that can be so tiny that they are nearly one-dimensional, to study the phase transition behavior of argon and krypton atoms.

"The physics can be quite different in fewer than three dimensions," said David Cobden, an associate professor of physics at the University of Washington and corresponding author of a paper describing the work published Friday (Jan. 29) in Science.

Co-authors, all from the UW, are Zenghui Wang, Jiang Wei, Peter Morse, J. Gregory Dash and Oscar Vilches.

For their observations, the group used carbon nanotubes, microscopic cylinders that have some thickness but are very close to being one-dimensional.

Phase transitions change the density of atoms. In the vapor form, there are fewer atoms and they are loosely packed. Liquid has more atoms and they are more tightly packed. The solid is a crystal formed of very tightly packed atoms. To determine the phase of the argon and krypton atoms, the researchers used the carbon nanotube much like a guitar string stretched over a fret. A nearby piece of conducting metal applied an electrical force to oscillate the string, and the scientists measured the current to "listen" as the vibration frequency changed -- a greater mass of atoms sticking to the nanotube surface produced a lower frequency.

"You listen to this nano guitar and as the pitch goes down you know there are more atoms sticking to the surface," Cobden said. "In principle you can hear one atom landing on the tube -- it's that sensitive."

The researchers also found that the nanotube's electrical resistance changed when krypton atoms stuck to the surface.

In the future, the scientists hope to be able to see how the atoms, as they populate the carbon nanotube, react to each other through various phase transitions, and also how they interact with the pure carbon graphite of the nanotube. They expect to see some significant differences in experiments approaching one dimension from those in two or three dimensions.

"For example, matter can freeze in 3-D and in 2-D, but theoretically it should not freeze in 1-D," Cobden said.

Besides providing a test bed for physics theories, the work also could be useful for sensing applications, such as nanoscale measurements in various fluid environments, examining functions within cell membranes or probing within nerves.

"Nanotubes allow you to probe things at the subcellular level," Cobden said.

The work was funded by the National Science Foundation, the American Chemical Society Petroleum Research Fund, the UW Royalty Research Fund and the UW University Initiatives Fund.

####

About University of Washington
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

For more information, please click here

Contacts:
David Cobden
206-372-2456
206-543-2686

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Physics

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Noise in a microwave amplifier is limited by quantum particles of heat November 10th, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Nanomedicine

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

Sensors

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE