Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Microwave fridges and nano diving boards

Abstract:
NPL scientists are paving the way for highly accurate measurement at the nano-scale and beyond, by being the first team in the world to develop a tiny microwave-powered room-temperature fridge.

Microwave fridges and nano diving boards

UK | Posted on January 21st, 2010

This microwave 'fridge' is unlike the one in your kitchen. Rather than chilling pints of milk, it cools tiny devices called 'micro' or 'nano-scale mechanical resonators' to a decidedly frosty -170 ºC. It is important to cool down these devices, which look and behave like tiny diving boards (the simplest type of mechanical resonator, with a well-defined resonant frequency, like a tuning fork), so that they can be measured accurately.

Heat is a killer when trying to make an accurate measurement. Any material that is warmer than absolute zero (-273 ºC) will have atoms moving around inside it, and this makes it very difficult to measure accurately (just as it would be very difficult to weigh a person who was jumping around on the scales).

Now imagine how much easier it would be to weigh the person if they were standing still - this is effectively what NPL has achieved. We have developed a technique that selectively cools down just the property of a sample that needs to be measured. This selective cooling saves an enormous amount of energy, as it means you don't have to waste energy cooling an entire sample when you are only interested in cooling and measuring a tiny fraction of it.

This technique will be of great use in nano-scale and quantum physics as it allows scientists to detect tiny changes in physical factors such as mass, force and displacement by measuring accurately changes in the resonant frequency of the diving board. This means it can be used in applications where highly sensitive detection is needed, such as bio-analytical screening for viruses (by catching a virus on the diving board!). In the longer term this technique could lead to development of even more sensitive 'quantum' diving boards which could be used to examine the really big questions of quantum physics, such as "At what scale do quantum effects break down?".

For more information on this research read 'Excitation, detection, and passive cooling of a micromechanical cantilever using near-field of a microwave resonator', published in the journal Applied Physics Letters 95, 113501 (2009) doi:10.1063/1.3224912 on 16 September 2009.

For more information, please contact Dr Ling Hao:

resource.npl.co.uk/expertise/search.php?name=Ling+Hao

Find out more about NPL's work in Quantum Phenomena:

www.npl.co.uk/quantum-phenomena/

####

About National Physical Laboratory
The National Physical Laboratory (NPL) is one of the UK's leading science and research facilities. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

For more information, please click here

Contacts:
National Physical Laboratory
Hampton Road
Teddington
Middlesex
TW11 0LW


Telephone: +44 20 8977 3222 (Switchboard)
Facsimile: +44 20 8614 0446

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Possible Futures

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Tools

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Nanobiotechnology

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Quantum nanoscience

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A new spin on reality July 15th, 2016

Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron July 12th, 2016

Quantum technologies to revolutionize 21st century: Nobel Laureates to discuss impacts at 66th Lindau Meeting July 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic