Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A successful collaboration and a new instrument for Diamond Light Source

The team involved with RASOR
The team involved with RASOR

Abstract:
On Friday 8th January 2010 Diamond became the proud owner of a new instrument that will enhance the capabilities of the facility's surface and interfaces research village, enabling more complicated and sensitive experiments.

A successful collaboration and a new instrument for Diamond Light Source

South Oxfordshire, UK | Posted on January 13th, 2010

The Reflectivity and Advanced Scattering from Ordered Regimes end station, or RASOR, as it is known, is a soft X-ray diffractometer that enables scientists to study strongly correlated electron systems by directly probing their magnetic, charge and orbital structures. This area of research can potentially provide a fundamental basis in the pursuit of a new generation of electronic data storage equipment, such as ultra-fast memory devices.

Provided for Diamond through a collaboration between the University of Durham, the Science and Technology Facilities Council (STFC) and Diamond itself, funding was awarded to Co-Principal Investigators on the project, Prof. Peter Hatton (Durham) and Prof. Gerrit van der Laan (STFC/Diamond), through a facility development grant to design and construct RASOR. The project was driven by Dr Tom Beale, Post-Doctoral Reseach Associate with Durham University and STFC, who has been in charge from inception to successful commissioning.

During the official handover ceremony at Diamond, the Vice-Chancellor of the University of Durham, Prof. Chris Higgins, congratulated everyone for delivering a successful project, before handing over to Prof. Gerd Materlik, CEO of Diamond, who thanked those involved for their hard work and spoke about the importance of collaboration and scientific advancement.

RASOR is a multipurpose end station that can be used for both diffraction and reflectivity techniques. It will initially be installed on Diamond's Nanoscience beamline (I06), before moving to its permanent home - the Beamline for Advanced Dichroism Experiments (BLADE, I10), which is currently under construction. Upon its completion and installation at Diamond, Prof. Hatton is delighted with the results.

"The RASOR project is unique in that it is an instrument built by the user community for the user community. It is immensely rewarding to see the close collaboration between Durham, Diamond and STFC successfully result in a versatile instrument on time and on budget. My research group and I are looking forward to using RASOR in the future." Prof Peter Hatton, University of Durham

Commissioning of RASOR took place in the autumn of 2009 with the first X-ray beam in the instrument in October last year. The first scientific results were collected soon after by Dr Beale, successfully demonstrating both reflectivity and diffraction techniques. Based at the Diamond synchrotron, Prof. van der Laan, is pleased with the project.

"It is exciting to see RASOR up and running on I06 at Diamond. The first results that Durham achieved were very promising and we hope for many groundbreaking results in the future that will continue to push the boundaries of our knowledge of the electronic and magnetic structure of materials." Prof Gerrit van der Laan, Diamond Light Source

RASOR is now available for user experiments at Diamond Light Source and is a UK national facility.

####

About Diamond Light Source
Diamond Light Source is the UK national synchrotron facility. Located in South Oxfordshire, it generates brilliant beams of light, from infra-red to X-rays, which are used in a wide range of applications, from structural biology through fundamental physics and chemistry to cultural heritage.

Construction of this new scientific facility began in early 2003 and Diamond became operational on schedule in January 2007. The Company is a Joint Venture funded by the UK Government through STFC (86%) and the Wellcome Trust (14%). Phase I investment of £263 million includes Diamondís buildings and the first seven experimental stations or beamlines. Phase II funding of £120 million for a further 15 beamlines was confirmed in October 2004. The facility represents the largest UK scientific investment for 40 years and can ultimately host up to 40 beamlines.

For more information, please click here

Contacts:
Tel: 01235 778000
Fax: 01235 778499

Copyright © Diamond Light Source

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Memory Technology

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A KAIST research team develops the first flexible phase-change random access memory June 15th, 2015

Argonne scientists announce first room-temperature magnetic skyrmion bubbles: New ideas are bubbling up for more efficient computer memory June 13th, 2015

Announcements

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Tools

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

Compact, Low Cost, Accurate: Mini Positioning Stages, by PI June 30th, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Oxford Instrumentsí TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project