Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A successful collaboration and a new instrument for Diamond Light Source

The team involved with RASOR
The team involved with RASOR

Abstract:
On Friday 8th January 2010 Diamond became the proud owner of a new instrument that will enhance the capabilities of the facility's surface and interfaces research village, enabling more complicated and sensitive experiments.

A successful collaboration and a new instrument for Diamond Light Source

South Oxfordshire, UK | Posted on January 13th, 2010

The Reflectivity and Advanced Scattering from Ordered Regimes end station, or RASOR, as it is known, is a soft X-ray diffractometer that enables scientists to study strongly correlated electron systems by directly probing their magnetic, charge and orbital structures. This area of research can potentially provide a fundamental basis in the pursuit of a new generation of electronic data storage equipment, such as ultra-fast memory devices.

Provided for Diamond through a collaboration between the University of Durham, the Science and Technology Facilities Council (STFC) and Diamond itself, funding was awarded to Co-Principal Investigators on the project, Prof. Peter Hatton (Durham) and Prof. Gerrit van der Laan (STFC/Diamond), through a facility development grant to design and construct RASOR. The project was driven by Dr Tom Beale, Post-Doctoral Reseach Associate with Durham University and STFC, who has been in charge from inception to successful commissioning.

During the official handover ceremony at Diamond, the Vice-Chancellor of the University of Durham, Prof. Chris Higgins, congratulated everyone for delivering a successful project, before handing over to Prof. Gerd Materlik, CEO of Diamond, who thanked those involved for their hard work and spoke about the importance of collaboration and scientific advancement.

RASOR is a multipurpose end station that can be used for both diffraction and reflectivity techniques. It will initially be installed on Diamond's Nanoscience beamline (I06), before moving to its permanent home - the Beamline for Advanced Dichroism Experiments (BLADE, I10), which is currently under construction. Upon its completion and installation at Diamond, Prof. Hatton is delighted with the results.

"The RASOR project is unique in that it is an instrument built by the user community for the user community. It is immensely rewarding to see the close collaboration between Durham, Diamond and STFC successfully result in a versatile instrument on time and on budget. My research group and I are looking forward to using RASOR in the future." Prof Peter Hatton, University of Durham

Commissioning of RASOR took place in the autumn of 2009 with the first X-ray beam in the instrument in October last year. The first scientific results were collected soon after by Dr Beale, successfully demonstrating both reflectivity and diffraction techniques. Based at the Diamond synchrotron, Prof. van der Laan, is pleased with the project.

"It is exciting to see RASOR up and running on I06 at Diamond. The first results that Durham achieved were very promising and we hope for many groundbreaking results in the future that will continue to push the boundaries of our knowledge of the electronic and magnetic structure of materials." Prof Gerrit van der Laan, Diamond Light Source

RASOR is now available for user experiments at Diamond Light Source and is a UK national facility.

####

About Diamond Light Source
Diamond Light Source is the UK national synchrotron facility. Located in South Oxfordshire, it generates brilliant beams of light, from infra-red to X-rays, which are used in a wide range of applications, from structural biology through fundamental physics and chemistry to cultural heritage.

Construction of this new scientific facility began in early 2003 and Diamond became operational on schedule in January 2007. The Company is a Joint Venture funded by the UK Government through STFC (86%) and the Wellcome Trust (14%). Phase I investment of £263 million includes Diamond’s buildings and the first seven experimental stations or beamlines. Phase II funding of £120 million for a further 15 beamlines was confirmed in October 2004. The facility represents the largest UK scientific investment for 40 years and can ultimately host up to 40 beamlines.

For more information, please click here

Contacts:
Tel: 01235 778000
Fax: 01235 778499

Copyright © Diamond Light Source

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Memory Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

Announcements

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Tools

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE