Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A successful collaboration and a new instrument for Diamond Light Source

The team involved with RASOR
The team involved with RASOR

Abstract:
On Friday 8th January 2010 Diamond became the proud owner of a new instrument that will enhance the capabilities of the facility's surface and interfaces research village, enabling more complicated and sensitive experiments.

A successful collaboration and a new instrument for Diamond Light Source

South Oxfordshire, UK | Posted on January 13th, 2010

The Reflectivity and Advanced Scattering from Ordered Regimes end station, or RASOR, as it is known, is a soft X-ray diffractometer that enables scientists to study strongly correlated electron systems by directly probing their magnetic, charge and orbital structures. This area of research can potentially provide a fundamental basis in the pursuit of a new generation of electronic data storage equipment, such as ultra-fast memory devices.

Provided for Diamond through a collaboration between the University of Durham, the Science and Technology Facilities Council (STFC) and Diamond itself, funding was awarded to Co-Principal Investigators on the project, Prof. Peter Hatton (Durham) and Prof. Gerrit van der Laan (STFC/Diamond), through a facility development grant to design and construct RASOR. The project was driven by Dr Tom Beale, Post-Doctoral Reseach Associate with Durham University and STFC, who has been in charge from inception to successful commissioning.

During the official handover ceremony at Diamond, the Vice-Chancellor of the University of Durham, Prof. Chris Higgins, congratulated everyone for delivering a successful project, before handing over to Prof. Gerd Materlik, CEO of Diamond, who thanked those involved for their hard work and spoke about the importance of collaboration and scientific advancement.

RASOR is a multipurpose end station that can be used for both diffraction and reflectivity techniques. It will initially be installed on Diamond's Nanoscience beamline (I06), before moving to its permanent home - the Beamline for Advanced Dichroism Experiments (BLADE, I10), which is currently under construction. Upon its completion and installation at Diamond, Prof. Hatton is delighted with the results.

"The RASOR project is unique in that it is an instrument built by the user community for the user community. It is immensely rewarding to see the close collaboration between Durham, Diamond and STFC successfully result in a versatile instrument on time and on budget. My research group and I are looking forward to using RASOR in the future." Prof Peter Hatton, University of Durham

Commissioning of RASOR took place in the autumn of 2009 with the first X-ray beam in the instrument in October last year. The first scientific results were collected soon after by Dr Beale, successfully demonstrating both reflectivity and diffraction techniques. Based at the Diamond synchrotron, Prof. van der Laan, is pleased with the project.

"It is exciting to see RASOR up and running on I06 at Diamond. The first results that Durham achieved were very promising and we hope for many groundbreaking results in the future that will continue to push the boundaries of our knowledge of the electronic and magnetic structure of materials." Prof Gerrit van der Laan, Diamond Light Source

RASOR is now available for user experiments at Diamond Light Source and is a UK national facility.

####

About Diamond Light Source
Diamond Light Source is the UK national synchrotron facility. Located in South Oxfordshire, it generates brilliant beams of light, from infra-red to X-rays, which are used in a wide range of applications, from structural biology through fundamental physics and chemistry to cultural heritage.

Construction of this new scientific facility began in early 2003 and Diamond became operational on schedule in January 2007. The Company is a Joint Venture funded by the UK Government through STFC (86%) and the Wellcome Trust (14%). Phase I investment of £263 million includes Diamondís buildings and the first seven experimental stations or beamlines. Phase II funding of £120 million for a further 15 beamlines was confirmed in October 2004. The facility represents the largest UK scientific investment for 40 years and can ultimately host up to 40 beamlines.

For more information, please click here

Contacts:
Tel: 01235 778000
Fax: 01235 778499

Copyright © Diamond Light Source

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Letiís New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instrumentsí 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Possible Futures

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Letiís New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Memory Technology

Magnetic skyrmions: Not the only ones of their class: JŁlich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

A powerful laser breakthrough: Lehigh research team demonstrates terahertz semiconductor laser with record-high output power May 2nd, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Letiís New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Tools

Oxford Instrumentsí 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project