Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UC Riverside Researcher Uses Graphene Quilts to Keep Things Cool

UCR's Professor of Electrical Engineering and Chair of Materials Science and Engineering Alexander Balandin is leading several projects to explore ways to use the unique capabilities of graphene “quilts” as heat conductors in high-power electronics. He led a team of researchers in UCR's Nano-Device Laboratory that first measured graphene's extraordinary thermal conductivity.
UCR's Professor of Electrical Engineering and Chair of Materials Science and Engineering Alexander Balandin is leading several projects to explore ways to use the unique capabilities of graphene “quilts” as heat conductors in high-power electronics. He led a team of researchers in UCR's Nano-Device Laboratory that first measured graphene's extraordinary thermal conductivity.

Abstract:
Professor Alexander Balandin studies single-atom-thick structures with remarkable ability to conduct heat

UC Riverside Researcher Uses Graphene Quilts to Keep Things Cool

Riverside, CA | Posted on December 19th, 2009

University of California, Riverside (UCR) Professor of Electrical Engineering and Chair of Materials Science and Engineering Alexander Balandin is leading several projects to explore ways to use the unique capabilities of graphene "quilts" as heat conductors in high-power electronics.

Graphene is a recently discovered single-atom-thick carbon crystal, which reveals many unique properties. In Balandin's designs, graphene "quilts" (large-area overlapping networks of graphene flakes) will play quite an opposite role of your grandma's quilts. They will remove heat instead of retaining it.

His work on graphene heat-conducting coats for heat removal from high-power gallium-nitride transistors is being funded by a recently awarded $420,000 grant from U.S. Office of Naval Research (ONR). It aims at an experimental proof-of-concept demonstration to be conducted in Balandin's Nano-Device Laboratory (NDL).

In addition to the ONR grant, Balandin received a new three-year subcontract with the Interconnect Focus Center (IFC), based at the Georgia Institute of Technology, that deals with graphene interconnects and heat spreaders for three-dimensional (3-D) electronics. According to the International Technology Roadmap for Semiconductors, in the next five years, up to 80 percent of microprocessor power will be consumed by the interconnect wiring—a driver for the search for new interconnect materials and innovative methods of heat removal.

Another recent subcontract awarded to Balandin is with the Functional Engineered Nano Architectonics (FENA) center based at UCLA. In this center, he investigates the problems of energy dissipation in graphene nanostructures and nanodevices. Combined new funding secured by Balandin this month for the three projects exceeds $1 million. The centers' funding comes from the Semiconductor Research Corporation (SRC) and Defense Advanced Research Project Agency (DARPA).

Most of the current research on graphene has focused on its electronic properties and graphene's potential for high-speed nano-circuits. Due to its unique structure, electrons travel at extremely high speeds throughout it.

Balandin is focusing on another of graphene's remarkable properties: it's extraordinarily high thermal conductivity, which can be used for heat removal in nanoscale and 3-D electronics. The higher speed, higher power densities and increased thermal residence in the state-of-the-art devices result in development of hot spots, performance degradation and thermal breakdown. Balandin's proposed graphene-based approach for thermal management represents a radical departure from conventional methods and might lead to creation of a new technology for hot-spot spreading.

Because graphene is only one molecule thick, it didn't lend itself to traditional methods of thermal conductivity measurement. Balandin led a team of researchers that first measured it using an original non-conventional technique in 2008. The procedure involved a non-contact approach on the basis of Raman spectroscopy utilizing the inelastic scattering of photons (light) by phonons (crystal vibrations). The power dissipated in graphene and corresponding temperature rise were detected by extremely small shifts in the wavelength of the light scattered from graphene. That was sufficient to extract the values of the thermal conductivity through an elaborate mathematical procedure.

Balandin's research group discovered that the thermal conductivity of large suspended graphene sheets varies in the range from about 3000 to 5300 W/mK (watts per meter per degree Kelvin) near room temperature. These are very high values, which exceed those of carbon nanotubes (3,000-3,500 W/mK) and diamond (1,000-2,200 W/mK).

As a result of his findings, Balandin has proposed several innovative graphene-based approaches for thermal management, which might lead to creation of a new technology for local cooling and hot-spot spreading in the high-power-density and ultra-fast chips. A detailed description of Balandin's graphene and thermal management research can be found in his invited popular science article, "Chill Out," in the October 2009 issue of IEEE Spectrum, the magazine of the The Institute of Electrical and Electronic Engineers (IEEE).

####

About UC Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

For more information, please click here

Contacts:
Don Davidson
Tel: (951) 827-1287

Copyright © UC Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Announcements

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic