Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UC Riverside Researcher Uses Graphene Quilts to Keep Things Cool

UCR's Professor of Electrical Engineering and Chair of Materials Science and Engineering Alexander Balandin is leading several projects to explore ways to use the unique capabilities of graphene “quilts” as heat conductors in high-power electronics. He led a team of researchers in UCR's Nano-Device Laboratory that first measured graphene's extraordinary thermal conductivity.
UCR's Professor of Electrical Engineering and Chair of Materials Science and Engineering Alexander Balandin is leading several projects to explore ways to use the unique capabilities of graphene “quilts” as heat conductors in high-power electronics. He led a team of researchers in UCR's Nano-Device Laboratory that first measured graphene's extraordinary thermal conductivity.

Abstract:
Professor Alexander Balandin studies single-atom-thick structures with remarkable ability to conduct heat

UC Riverside Researcher Uses Graphene Quilts to Keep Things Cool

Riverside, CA | Posted on December 19th, 2009

University of California, Riverside (UCR) Professor of Electrical Engineering and Chair of Materials Science and Engineering Alexander Balandin is leading several projects to explore ways to use the unique capabilities of graphene "quilts" as heat conductors in high-power electronics.

Graphene is a recently discovered single-atom-thick carbon crystal, which reveals many unique properties. In Balandin's designs, graphene "quilts" (large-area overlapping networks of graphene flakes) will play quite an opposite role of your grandma's quilts. They will remove heat instead of retaining it.

His work on graphene heat-conducting coats for heat removal from high-power gallium-nitride transistors is being funded by a recently awarded $420,000 grant from U.S. Office of Naval Research (ONR). It aims at an experimental proof-of-concept demonstration to be conducted in Balandin's Nano-Device Laboratory (NDL).

In addition to the ONR grant, Balandin received a new three-year subcontract with the Interconnect Focus Center (IFC), based at the Georgia Institute of Technology, that deals with graphene interconnects and heat spreaders for three-dimensional (3-D) electronics. According to the International Technology Roadmap for Semiconductors, in the next five years, up to 80 percent of microprocessor power will be consumed by the interconnect wiring—a driver for the search for new interconnect materials and innovative methods of heat removal.

Another recent subcontract awarded to Balandin is with the Functional Engineered Nano Architectonics (FENA) center based at UCLA. In this center, he investigates the problems of energy dissipation in graphene nanostructures and nanodevices. Combined new funding secured by Balandin this month for the three projects exceeds $1 million. The centers' funding comes from the Semiconductor Research Corporation (SRC) and Defense Advanced Research Project Agency (DARPA).

Most of the current research on graphene has focused on its electronic properties and graphene's potential for high-speed nano-circuits. Due to its unique structure, electrons travel at extremely high speeds throughout it.

Balandin is focusing on another of graphene's remarkable properties: it's extraordinarily high thermal conductivity, which can be used for heat removal in nanoscale and 3-D electronics. The higher speed, higher power densities and increased thermal residence in the state-of-the-art devices result in development of hot spots, performance degradation and thermal breakdown. Balandin's proposed graphene-based approach for thermal management represents a radical departure from conventional methods and might lead to creation of a new technology for hot-spot spreading.

Because graphene is only one molecule thick, it didn't lend itself to traditional methods of thermal conductivity measurement. Balandin led a team of researchers that first measured it using an original non-conventional technique in 2008. The procedure involved a non-contact approach on the basis of Raman spectroscopy utilizing the inelastic scattering of photons (light) by phonons (crystal vibrations). The power dissipated in graphene and corresponding temperature rise were detected by extremely small shifts in the wavelength of the light scattered from graphene. That was sufficient to extract the values of the thermal conductivity through an elaborate mathematical procedure.

Balandin's research group discovered that the thermal conductivity of large suspended graphene sheets varies in the range from about 3000 to 5300 W/mK (watts per meter per degree Kelvin) near room temperature. These are very high values, which exceed those of carbon nanotubes (3,000-3,500 W/mK) and diamond (1,000-2,200 W/mK).

As a result of his findings, Balandin has proposed several innovative graphene-based approaches for thermal management, which might lead to creation of a new technology for local cooling and hot-spot spreading in the high-power-density and ultra-fast chips. A detailed description of Balandin's graphene and thermal management research can be found in his invited popular science article, "Chill Out," in the October 2009 issue of IEEE Spectrum, the magazine of the The Institute of Electrical and Electronic Engineers (IEEE).

####

About UC Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

For more information, please click here

Contacts:
Don Davidson
Tel: (951) 827-1287

Copyright © UC Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Announcements

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE