Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > National Science Foundation Grants Award to Modumetal for High Temperature Diesel Engine Coatings

Abstract:
Seattle-based Modumetal, Inc announced today that it has received a National Science Foundation (NSF) award for a cutting-edge new coating that is expected to improve the operating performance of diesel engines. Modumetal's coating technology will provide for greater operating temperatures to be achieved in diesel engines, thus improving fuel efficiency and reducing emissions.

National Science Foundation Grants Award to Modumetal for High Temperature Diesel Engine Coatings

Seattle, WA | Posted on December 16th, 2009

There is an ever increasing demand in the marketplace and in the regulatory environment for improvements in the fuel efficiency of transportation vehicles. A major limiting factor in meeting these needs is the availability of advanced materials that can survive the requisite operating temperatures. Modumetal's Thick Thermal Barrier Coatings (T-TBC), which will be developed under the subject contract, is such a material that will provide the basis for high-temperature, high-efficiency automobile and truck diesel engines by reducing the apparent temperature at the engine's base metal and protecting against abrasion and high temperature-accelerated degradation.

The project, which will be lead by Modumetal's Dr. John Whitaker, will involve specific application of a novel, nanolaminated T-TBC for insulation of critical engine components such as piston crowns, valve faces, and cylinder heads, and lower the heat rejected to the cooling system, which in turn increases the amount of the combustion energy converted to useful work.

From an environment protection standpoint, the additional advantages afforded by higher diesel operating temperatures include reductions in both carbon emissions (unburned hydrocarbons, particulates, and CO2) and noise. According to TBC Vice President, Todd Wallen, "Modumetal's TBCs are not only reducing the emission of carbon into the environment, but are also eliminating the creation of additional waste of natural resources by ensuring longer life and efficiency in equipment and operations. So that as this NSF Award elevates further the performance advancements made possible by Modumetal's unique coating technology, the recognition also punctuates the growing economic and positive environmental impact of this broad nanotechnology field."

"The NSF Award further validates the progress we've made both as a company, and as a solutions provider in a key U.S. industry which needs such innovative technologies as this one in order to secure a position in the forefront of a competitive and demanding international marketplace," said Modumetal CEO, Christina Lomasney.

####

About Modumetal
Modumetal, based in the heart of Seattle, Washington, is realizing the commercial potential of a unique class of nanolaminated materials. Modumetal is creating materials that will change design and manufacturing of metals by redefining structural, corrosion and high temperature performance. Modumetal represents a whole new way of producing parts and is leveraging nanotechnology to achieve this unprecedented performance. Modumetal is made by a “green” electrochemical manufacturing approach, which reduces the carbon footprint of conventional metals manufacturing at the same time that it revolutionizes materials performance.

About Modumetal’s Manufacturing Process

The manufacturing process, Modumetal by Design (MbD), is a low-cost, scalable, and net-shape descendant of electrochemical manufacturing. MbD is a non-line-of-site, ambient-temperature process that supports the production of a wide range of fully dense metals, alloys and net-shape parts. MbD differs from conventional electrochemical plating and forming in its precise, time-varying control of plating conditions at the workpiece surface, producing laminated structures with wavelengths approaching several nanometers. The Modumetal technology is the subject of several issued and pending patents.

For more information, please click here

Contacts:
877-632-4242

Copyright © PRWeb

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Environment

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Automotive/Transportation

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

New imaging agent provides better picture of the gut July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

New-Contracts/Sales/Customers

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

University of Maastricht Adds Complete Correlative Workflow from FEI to its Institute of Nanoscopy June 23rd, 2014

LatticeGear Sells First LatticeAx 300 Cleaving System to X-FAB: LatticeAx 300 provides fast, accurate cross-sectioning of samples for analysis — more accurately than manual methods and faster and less expensively than automated systems June 9th, 2014

UMass Amherst Purchases Nanonex Advanced 8" NIL Tool NX-2608BA May 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE