Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > National Science Foundation Grants Award to Modumetal for High Temperature Diesel Engine Coatings

Abstract:
Seattle-based Modumetal, Inc announced today that it has received a National Science Foundation (NSF) award for a cutting-edge new coating that is expected to improve the operating performance of diesel engines. Modumetal's coating technology will provide for greater operating temperatures to be achieved in diesel engines, thus improving fuel efficiency and reducing emissions.

National Science Foundation Grants Award to Modumetal for High Temperature Diesel Engine Coatings

Seattle, WA | Posted on December 16th, 2009

There is an ever increasing demand in the marketplace and in the regulatory environment for improvements in the fuel efficiency of transportation vehicles. A major limiting factor in meeting these needs is the availability of advanced materials that can survive the requisite operating temperatures. Modumetal's Thick Thermal Barrier Coatings (T-TBC), which will be developed under the subject contract, is such a material that will provide the basis for high-temperature, high-efficiency automobile and truck diesel engines by reducing the apparent temperature at the engine's base metal and protecting against abrasion and high temperature-accelerated degradation.

The project, which will be lead by Modumetal's Dr. John Whitaker, will involve specific application of a novel, nanolaminated T-TBC for insulation of critical engine components such as piston crowns, valve faces, and cylinder heads, and lower the heat rejected to the cooling system, which in turn increases the amount of the combustion energy converted to useful work.

From an environment protection standpoint, the additional advantages afforded by higher diesel operating temperatures include reductions in both carbon emissions (unburned hydrocarbons, particulates, and CO2) and noise. According to TBC Vice President, Todd Wallen, "Modumetal's TBCs are not only reducing the emission of carbon into the environment, but are also eliminating the creation of additional waste of natural resources by ensuring longer life and efficiency in equipment and operations. So that as this NSF Award elevates further the performance advancements made possible by Modumetal's unique coating technology, the recognition also punctuates the growing economic and positive environmental impact of this broad nanotechnology field."

"The NSF Award further validates the progress we've made both as a company, and as a solutions provider in a key U.S. industry which needs such innovative technologies as this one in order to secure a position in the forefront of a competitive and demanding international marketplace," said Modumetal CEO, Christina Lomasney.

####

About Modumetal
Modumetal, based in the heart of Seattle, Washington, is realizing the commercial potential of a unique class of nanolaminated materials. Modumetal is creating materials that will change design and manufacturing of metals by redefining structural, corrosion and high temperature performance. Modumetal represents a whole new way of producing parts and is leveraging nanotechnology to achieve this unprecedented performance. Modumetal is made by a “green” electrochemical manufacturing approach, which reduces the carbon footprint of conventional metals manufacturing at the same time that it revolutionizes materials performance.

About Modumetal’s Manufacturing Process

The manufacturing process, Modumetal by Design (MbD), is a low-cost, scalable, and net-shape descendant of electrochemical manufacturing. MbD is a non-line-of-site, ambient-temperature process that supports the production of a wide range of fully dense metals, alloys and net-shape parts. MbD differs from conventional electrochemical plating and forming in its precise, time-varying control of plating conditions at the workpiece surface, producing laminated structures with wavelengths approaching several nanometers. The Modumetal technology is the subject of several issued and pending patents.

For more information, please click here

Contacts:
877-632-4242

Copyright © PRWeb

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Announcements

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Environment

The use of nanoparticles and bioremediation to decontaminate polluted soils June 14th, 2016

UQ research accelerates next-generation ultra-precise sensing technology June 10th, 2016

VentureLab nanotechnology startup wins TechConnect Innovation Award June 2nd, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Automotive/Transportation

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

New-Contracts/Sales/Customers

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Nanometrics Selected for Third-Generation 3D-NAND Process Control: Atlas® Systems Extend Advanced Device Manufacturing Capability June 14th, 2016

Industrial Nanotech, Inc. Signs Agreement With and Receives First Purchase Order from Major New Customer in China June 6th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic