Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > National Science Foundation Grants Award to Modumetal for High Temperature Diesel Engine Coatings

Abstract:
Seattle-based Modumetal, Inc announced today that it has received a National Science Foundation (NSF) award for a cutting-edge new coating that is expected to improve the operating performance of diesel engines. Modumetal's coating technology will provide for greater operating temperatures to be achieved in diesel engines, thus improving fuel efficiency and reducing emissions.

National Science Foundation Grants Award to Modumetal for High Temperature Diesel Engine Coatings

Seattle, WA | Posted on December 16th, 2009

There is an ever increasing demand in the marketplace and in the regulatory environment for improvements in the fuel efficiency of transportation vehicles. A major limiting factor in meeting these needs is the availability of advanced materials that can survive the requisite operating temperatures. Modumetal's Thick Thermal Barrier Coatings (T-TBC), which will be developed under the subject contract, is such a material that will provide the basis for high-temperature, high-efficiency automobile and truck diesel engines by reducing the apparent temperature at the engine's base metal and protecting against abrasion and high temperature-accelerated degradation.

The project, which will be lead by Modumetal's Dr. John Whitaker, will involve specific application of a novel, nanolaminated T-TBC for insulation of critical engine components such as piston crowns, valve faces, and cylinder heads, and lower the heat rejected to the cooling system, which in turn increases the amount of the combustion energy converted to useful work.

From an environment protection standpoint, the additional advantages afforded by higher diesel operating temperatures include reductions in both carbon emissions (unburned hydrocarbons, particulates, and CO2) and noise. According to TBC Vice President, Todd Wallen, "Modumetal's TBCs are not only reducing the emission of carbon into the environment, but are also eliminating the creation of additional waste of natural resources by ensuring longer life and efficiency in equipment and operations. So that as this NSF Award elevates further the performance advancements made possible by Modumetal's unique coating technology, the recognition also punctuates the growing economic and positive environmental impact of this broad nanotechnology field."

"The NSF Award further validates the progress we've made both as a company, and as a solutions provider in a key U.S. industry which needs such innovative technologies as this one in order to secure a position in the forefront of a competitive and demanding international marketplace," said Modumetal CEO, Christina Lomasney.

####

About Modumetal
Modumetal, based in the heart of Seattle, Washington, is realizing the commercial potential of a unique class of nanolaminated materials. Modumetal is creating materials that will change design and manufacturing of metals by redefining structural, corrosion and high temperature performance. Modumetal represents a whole new way of producing parts and is leveraging nanotechnology to achieve this unprecedented performance. Modumetal is made by a “green” electrochemical manufacturing approach, which reduces the carbon footprint of conventional metals manufacturing at the same time that it revolutionizes materials performance.

About Modumetal’s Manufacturing Process

The manufacturing process, Modumetal by Design (MbD), is a low-cost, scalable, and net-shape descendant of electrochemical manufacturing. MbD is a non-line-of-site, ambient-temperature process that supports the production of a wide range of fully dense metals, alloys and net-shape parts. MbD differs from conventional electrochemical plating and forming in its precise, time-varying control of plating conditions at the workpiece surface, producing laminated structures with wavelengths approaching several nanometers. The Modumetal technology is the subject of several issued and pending patents.

For more information, please click here

Contacts:
877-632-4242

Copyright © PRWeb

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Environment

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Energy

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Automotive/Transportation

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

New-Contracts/Sales/Customers

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Deep Space Industries to provide Comet satellite propulsion for BlackSky, LeoStella April 3rd, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX® to Extend Its FD-SOI Platform and Technology Leadership : GF’s FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Solid State Laser manufacturer Lasertel Inc. purchases an Oxford Instruments ICPCVD advanced deposition solution for improved device performance November 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project