Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Surface engineering: Imprinted cleanliness

Fig. 1: Etching a dense array of pits into the surface of a silicon substrate with a laser increases its water repellency. Using this surface as a template to imprint the reverse of this pattern into a sol–gel film results in a surface that is even more water repellent.

© 2009 A*STAR
Fig. 1: Etching a dense array of pits into the surface of a silicon substrate with a laser increases its water repellency. Using this surface as a template to imprint the reverse of this pattern into a sol–gel film results in a surface that is even more water repellent. © 2009 A*STAR

Abstract:
A laser-patterned template could enable self-cleaning surfaces to be grown over large areas at low cost.

Surface engineering: Imprinted cleanliness

Singapore | Posted on December 9th, 2009

The leaves of the lotus flower have a remarkable property—they are self-cleaning. Because the leaves are hydrophobic, or water repellent, water that comes into contact with them forms spherical beads that roll along the leaf picking up dust and dirt on from its surface. Now, a research group from the Singapore Institute of Manufacturing Technology of A*STAR have developed a method that could eventually enable large surface areas to be coated with a hydrophobic layer that mimics this self-cleaning property (1).

"Hydrophobic surfaces are desirable for many industrial applications such as anti-biofouling paints for boats, anti-sticking of snow for antennas and windows, self-cleaning windshields for automobiles, stain-resistant textiles and anti-soiling architectural coatings," explains Xincai Wang from the group.

Many techniques exist for making a surface hydrophobic. Coating a surface with chemicals that are naturally water repellent, for example, is one approach. However, this may not work for many surfaces. Moreover, such chemicals gradually degrade and are easily rubbed off, requiring continual retreatment. A more robust and longer-lasting approach is to change the microscopic structure of a surface. It is well known that structuring a surface to have micrometer-sized protrusions increases its water-repelling properties. But conventional techniques for patterning these structures, such as photolithography combined with reactive ion etching, are time-consuming and expensive.

The technique developed by Wang and co-workers produces hydrophobic surfaces that are robust and potentially much cheaper than those produced by photolithgraphic patterning. First, the researchers drilled a dense array of pits into a flat silicon substrate with a sharply focused, ultraviolet laser (Fig. 1). They found that this step on its own increased the hydrophobicity of the surface, causing water droplets on its surface to form a more spherical shape than on an untreated surface. Such behavior is typically quantified by measuring the angle made by the base of a droplet with the surface, known as the wetting angle, which in this case increased from 64.2° to 97.5°.

Next, Wang and co-workers used the silicon surface as a stamp to imprint the inverse of its pattern into the surface of a soft sol-gel film. Without modification, these films exhibited hydrophibicity with a contact angle of 110°. But imprinting them with the silicon stamp increased this to 138°.

In future work, the researchers intend to extend this approach to make hydrophobic surfaces over large areas on an industrial scale.

The A*STAR affiliated authors in this highlight are from the Singapore Institute of Manufacturing Technology

Reference
1 Wang, X.C., Wu, L.Y.L., Shao, Q. & Zheng, H.Y. Laser micro structuring on a Si substrate for improving surface hydrophobicity. Journal of Micromechanics and Microengineering 19, 085025 (2009).

####

About A*STAR
A*STAR Research is an online and print publication highlighting some of the best research and technological developments at the research institutes of Singapore’s Agency for Science, Technology and Research (A*STAR). Established in 2002, A*STAR has thrived as a global research organization with a principal mission of fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR currently oversees 14 research institutes as well as 7 consortia and centers located in the Biopolis and Fusionopolis complexes and the vicinity, and supports extramural research in collaboration with universities, hospital research centers and other local and international partners. The various A*STAR institutes are involved in research in a wide range of scientific fields, coordinated and funded by Singapore’s Biomedical Research Council (BMRC) and Science and Engineering Research Council (SERC).

For more information, please click here

Copyright © A*STAR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Marine/Watercraft

BRAAVOO will design an unmanned surveying vessel and marine buoy that carry biosensors to monitor marine pollutants November 12th, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

NRL Researchers Develop Harder Ceramic for Armor Windows April 29th, 2014

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Materials/Metamaterials

Spider electro-combs its sticky nano-filaments January 28th, 2015

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Environment

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Iran Designs Magnetic Nano-Absorbents Cleaning Chemical Pollutants January 11th, 2015

Construction

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Atomic placement of elements counts for strong concrete: Rice University researchers model particulate systems to determine their qualities January 14th, 2015

Iranian Researchers Prolong Life of Steel Armatures in Concrete Structures January 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE