Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Surface engineering: Imprinted cleanliness

Fig. 1: Etching a dense array of pits into the surface of a silicon substrate with a laser increases its water repellency. Using this surface as a template to imprint the reverse of this pattern into a sol–gel film results in a surface that is even more water repellent.

© 2009 A*STAR
Fig. 1: Etching a dense array of pits into the surface of a silicon substrate with a laser increases its water repellency. Using this surface as a template to imprint the reverse of this pattern into a sol–gel film results in a surface that is even more water repellent. © 2009 A*STAR

Abstract:
A laser-patterned template could enable self-cleaning surfaces to be grown over large areas at low cost.

Surface engineering: Imprinted cleanliness

Singapore | Posted on December 9th, 2009

The leaves of the lotus flower have a remarkable property—they are self-cleaning. Because the leaves are hydrophobic, or water repellent, water that comes into contact with them forms spherical beads that roll along the leaf picking up dust and dirt on from its surface. Now, a research group from the Singapore Institute of Manufacturing Technology of A*STAR have developed a method that could eventually enable large surface areas to be coated with a hydrophobic layer that mimics this self-cleaning property (1).

"Hydrophobic surfaces are desirable for many industrial applications such as anti-biofouling paints for boats, anti-sticking of snow for antennas and windows, self-cleaning windshields for automobiles, stain-resistant textiles and anti-soiling architectural coatings," explains Xincai Wang from the group.

Many techniques exist for making a surface hydrophobic. Coating a surface with chemicals that are naturally water repellent, for example, is one approach. However, this may not work for many surfaces. Moreover, such chemicals gradually degrade and are easily rubbed off, requiring continual retreatment. A more robust and longer-lasting approach is to change the microscopic structure of a surface. It is well known that structuring a surface to have micrometer-sized protrusions increases its water-repelling properties. But conventional techniques for patterning these structures, such as photolithography combined with reactive ion etching, are time-consuming and expensive.

The technique developed by Wang and co-workers produces hydrophobic surfaces that are robust and potentially much cheaper than those produced by photolithgraphic patterning. First, the researchers drilled a dense array of pits into a flat silicon substrate with a sharply focused, ultraviolet laser (Fig. 1). They found that this step on its own increased the hydrophobicity of the surface, causing water droplets on its surface to form a more spherical shape than on an untreated surface. Such behavior is typically quantified by measuring the angle made by the base of a droplet with the surface, known as the wetting angle, which in this case increased from 64.2° to 97.5°.

Next, Wang and co-workers used the silicon surface as a stamp to imprint the inverse of its pattern into the surface of a soft sol-gel film. Without modification, these films exhibited hydrophibicity with a contact angle of 110°. But imprinting them with the silicon stamp increased this to 138°.

In future work, the researchers intend to extend this approach to make hydrophobic surfaces over large areas on an industrial scale.

The A*STAR affiliated authors in this highlight are from the Singapore Institute of Manufacturing Technology

Reference
1 Wang, X.C., Wu, L.Y.L., Shao, Q. & Zheng, H.Y. Laser micro structuring on a Si substrate for improving surface hydrophobicity. Journal of Micromechanics and Microengineering 19, 085025 (2009).

####

About A*STAR
A*STAR Research is an online and print publication highlighting some of the best research and technological developments at the research institutes of Singapore’s Agency for Science, Technology and Research (A*STAR). Established in 2002, A*STAR has thrived as a global research organization with a principal mission of fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR currently oversees 14 research institutes as well as 7 consortia and centers located in the Biopolis and Fusionopolis complexes and the vicinity, and supports extramural research in collaboration with universities, hospital research centers and other local and international partners. The various A*STAR institutes are involved in research in a wide range of scientific fields, coordinated and funded by Singapore’s Biomedical Research Council (BMRC) and Science and Engineering Research Council (SERC).

For more information, please click here

Copyright © A*STAR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Marine/Watercraft

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Quantum tech in space? Scientists design remote monitoring system for inaccessible quantum devices February 11th, 2022

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project