Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Carbon Nanotubes and Semiconductor Nanowires for Microelectronics

The continuous downscaling of feature sizes in microelectronics according to Moore's law has already required the introduction of several "non-conventional" materials into the semiconductor manufacturing industry in recent years, such as Cu, high- and low- k dielectrics, etc.

Carbon Nanotubes and Semiconductor Nanowires for Microelectronics

UK | Posted on December 9th, 2009

For very advanced technology nodes (i.e.towards the 16nm node), bottom-up grown nanomaterials are also being considered for their potential as building blocks of devices and interconnections. Nanomaterials would not necessarily directly contribute to higher device densities, but their unique properties may solve specific issues linked to downscaling and would certainly enable a number of new device concepts and architectures.

Carbon Nanotubes (CNTs) and semiconductor Nanowires (NWs) are generally bottomup grown in a catalysed chemical vapour deposition (CCVD) fashion, i.e. with the mediation of metal nanoparticles. The formation of such nanoparticles by breaking up a thin catalyst film on the substrate, and the particle pre-growth treatment are key steps of the global growth process, which would literally only start when the precursor gases are brought into the chamber (Fig.1).

For microelectronics applications, it is essential that the growth process stays compatible with Si technology in terms of materials, tools and processes used, and also that it can be realised on wafer -scale. CNTs are mostly being considered as possible interconnects material, as replacement of Cu interconnects. The characteristic ballistic conduction of metallic CNTs, together with their high thermal conductivity (about 6000 W K m-1, compared to 400 W K m-1 for Cu), makes them particularly interesting for vertical interconnects in small vias (10 nm diameter and below) with high aspect ratios. The most favourable configuration would be the growth of high density single wall carbon nanotubes, although also multi-wall nanotubes would lead to an improvement as compared to Cu.

As shown in Fig.2, a high density (~1012 CNTs/cm2) carpet of aligned CNTs with a few nm diameter was grown at 650ºC in a PlasmalabSystem100, starting from a Fe/Ti bilayer catalyst. The plasma pre-treatment of the particles is key to such high density growth.

Semiconductor nanowires are ideal building blocks for both logics and memory devices. Their vertical wire geometry allows excellent control on the electrical field in the channel of a nanowire-based transistor thanks to the all-around gate. Also, the growth of segmented nanowires would enable the formation of high quality hetero-junctions of mismatched semiconductors, thanks to favourable elastic and plastic relaxation phenomena at the nanoscale. On the other hand, NWs are generally grown using Au catalyst particles. Au is a killer impurity in Si technology, and trials to use other metal catalysts have not been as successful. In Fig.3 we show the feasibility of Si NWs growth from indium nanoparticles, again in a PlasmalabSystem100. Indium is not an efficient chemical catalyst for the Si precursor dissociation, so the use of plasma-enhanced CVD growth, following a plasma-based particle pre-growth treatment of the In particles, is essential for a successful In -mediated nanowire growth.

Author: Francesca Iacopi, PhD, Senior Scientist, IMEC

(see full release for all three figures)


About Oxford Instruments
Oxford Instruments is a worldwide business supplying high technology tools and systems for the analysis and manipulation of matter at the smallest scale. Our diverse markets include industrial analysis, research, education, space, and energy.

For more information, please click here

Copyright © Oxford Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A quantum simulator of impossible physics: In the experiment, developed by the UPV/EHU-University of the Basque Country in conjunction with the University of Tsinghua (China), the atoms simulate absurd actions "as if they were actors in a quantum theatre" October 8th, 2015

Arrowhead to Present at Upcoming Conferences October 8th, 2015

Purdue launching new quantum center during workshop October 8th, 2015

Newly discovered 'design rule' brings nature-inspired nanostructures one step closer: Computer sims and microscopy research at Berkeley Lab yield first atomic-resolution structure of a peptoid nanosheet October 8th, 2015

Thin films

ORNL researchers find 'greener' way to assemble materials for solar applications October 5th, 2015

Wearable electronic health patches may now be cheaper and easier to make September 30th, 2015

Nano-mechanical study offers new assessment of silicon for next-gen batteries September 25th, 2015

Researchers set speed records for zinc-based transistors with argon plasma process: Researchers at Korea University have created a thin-film transistor with about 10 times the electron mobility speeds of its predecessors, promising faster processing for the next generation of LCD September 23rd, 2015

Chip Technology

Global leader in semiconductor technology to maintain and expand operations at SUNY Poly CNSE in Albany October 8th, 2015

Purdue launching new quantum center during workshop October 8th, 2015

Leti Joins GLOBALFOUNDRIES’ Eco-System Partners With Focus on Supporting 22FDX™ Platform: GLOBALSOLUTIONSSM Partnership Will Enable Leti’s FD-SOI and ASICS Design-and-Fabrication Solutions on GLOBALFOUNDRIES Technologies October 7th, 2015

Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons October 7th, 2015


Rice news release: Smaller is better for nanotube analysis: Rice University's variance spectroscopy technique advances nanoparticle analysis September 30th, 2015

Carbon Nanotubes Applied to Create Electrical Conductivity in Woolen Fabrics September 30th, 2015

Characterizing the forces that hold everything together: UMass Amherst physicists offer new open source calculations for molecular interactions September 23rd, 2015

UO research dollars climbed in FY 2015: Buoyed by an uptick in federal awards, the university saw gains in its overall sponsored research funding and continued high proposal counts in 2014-2015 September 17th, 2015


Room temperature magnetic skyrmions, a new type of digital memory? October 8th, 2015

Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons October 7th, 2015

First circularly polarized light detector on a silicon chip: Promises to expand use of polarized light for drug screening, surveillance, optical communications September 24th, 2015

Nanoelectronics could get a boost from carbon research: The smallest of electronics could one day have the ability to turn on and off on an atomic scale September 17th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic