Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon Nanotubes and Semiconductor Nanowires for Microelectronics

Abstract:
The continuous downscaling of feature sizes in microelectronics according to Moore's law has already required the introduction of several "non-conventional" materials into the semiconductor manufacturing industry in recent years, such as Cu, high- and low- k dielectrics, etc.

Carbon Nanotubes and Semiconductor Nanowires for Microelectronics

UK | Posted on December 9th, 2009

For very advanced technology nodes (i.e.towards the 16nm node), bottom-up grown nanomaterials are also being considered for their potential as building blocks of devices and interconnections. Nanomaterials would not necessarily directly contribute to higher device densities, but their unique properties may solve specific issues linked to downscaling and would certainly enable a number of new device concepts and architectures.

Carbon Nanotubes (CNTs) and semiconductor Nanowires (NWs) are generally bottomup grown in a catalysed chemical vapour deposition (CCVD) fashion, i.e. with the mediation of metal nanoparticles. The formation of such nanoparticles by breaking up a thin catalyst film on the substrate, and the particle pre-growth treatment are key steps of the global growth process, which would literally only start when the precursor gases are brought into the chamber (Fig.1).

For microelectronics applications, it is essential that the growth process stays compatible with Si technology in terms of materials, tools and processes used, and also that it can be realised on wafer -scale. CNTs are mostly being considered as possible interconnects material, as replacement of Cu interconnects. The characteristic ballistic conduction of metallic CNTs, together with their high thermal conductivity (about 6000 W K m-1, compared to 400 W K m-1 for Cu), makes them particularly interesting for vertical interconnects in small vias (10 nm diameter and below) with high aspect ratios. The most favourable configuration would be the growth of high density single wall carbon nanotubes, although also multi-wall nanotubes would lead to an improvement as compared to Cu.

As shown in Fig.2, a high density (~1012 CNTs/cm2) carpet of aligned CNTs with a few nm diameter was grown at 650ºC in a PlasmalabSystem100, starting from a Fe/Ti bilayer catalyst. The plasma pre-treatment of the particles is key to such high density growth.

Semiconductor nanowires are ideal building blocks for both logics and memory devices. Their vertical wire geometry allows excellent control on the electrical field in the channel of a nanowire-based transistor thanks to the all-around gate. Also, the growth of segmented nanowires would enable the formation of high quality hetero-junctions of mismatched semiconductors, thanks to favourable elastic and plastic relaxation phenomena at the nanoscale. On the other hand, NWs are generally grown using Au catalyst particles. Au is a killer impurity in Si technology, and trials to use other metal catalysts have not been as successful. In Fig.3 we show the feasibility of Si NWs growth from indium nanoparticles, again in a PlasmalabSystem100. Indium is not an efficient chemical catalyst for the Si precursor dissociation, so the use of plasma-enhanced CVD growth, following a plasma-based particle pre-growth treatment of the In particles, is essential for a successful In -mediated nanowire growth.

Author: Francesca Iacopi, PhD, Senior Scientist, IMEC

(see full release for all three figures)

####

About Oxford Instruments
Oxford Instruments is a worldwide business supplying high technology tools and systems for the analysis and manipulation of matter at the smallest scale. Our diverse markets include industrial analysis, research, education, space, and energy.

For more information, please click here

Copyright © Oxford Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Thin films

ANU invention to inspire new night-vision specs December 7th, 2016

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Chip Technology

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project