Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Imec presents new GaN-on-Si architecture for enhancement mode power switching devices

IMEC SiN/AlGaN/GaN field effect transistor
IMEC SiN/AlGaN/GaN field effect transistor

Abstract:
At this week's International Electron Devices Meeting, the nanoelectronics research center imec presents an innovative, simple and robust GaN-on-Si double heterostructure FET (field effect transistor) architecture for GaN-on-Si power switching devices. The architecture meets the normally off requirements of power switching circuits and is characterized by low leakage and high breakdown voltage, both essential parameters to reduce the power loss of high-power switching applications.

Imec presents new GaN-on-Si architecture for enhancement mode power switching devices

IEEE IEDM 2009, Baltimore, MD | Posted on December 8th, 2009

High-voltage power devices are traditionally based on Si-MOSFET structures. However, for a number of applications, Si power devices have reached the intrinsic material limits. GaN-compounds are nowadays the best candidates to replace Si power devices, thanks to their high band gap (excellent transport properties) and their high electrical breakdown field. However, the cost of GaN power devices is high. GaN-epilayers grown on large diameter Si wafers, potentially up to 200mm, offer a lower cost technology compared to other substrates.

Imec obtained a high-breakdown voltage of almost 1000V combined with low on-resistance by growing an SiN/AlGaN/GaN/AlGaN double heterostructure FET structure on a Si substrate. By combining its double heterostructure FET architecture with in-situ SiN grown in the same epitaxial sequence as the III-nitride layers, imec succeeded in obtaining e-mode device operation. This is typically required in applications for safety reasons. The fabrication is based on an optimized process for the selective removal of in-situ SiN. The resulting SiN/AlGaN/GaN/AlGaN double heterostructure FET is characterized by a high breakdown voltage of 980V, an excellent uniformity and a low dynamic specific on-resistance of 3.5 mW.cm2 that is well within the present state-of-the-art. These results hold the promise of a huge market opportunity for GaN-on-Si power devices.

Within imec's industrial affiliation program (IIAP) on GaN-on-Si technology, imec and its partners focus on the development of GaN technology for both power conversion and solid state lighting applications. An important goal of the program is to lower GaN technology cost by using large-diameter GaN-on-Si and hence by leveraging on the scale of economics. Imec invites both integrated device manufacturers and compound semiconductor industry to join the program. Partners can build on imec's extensive expertise in GaN and benefit from sharing of cost, risk and talent.

####

About IMEC
Imec performs world-leading research in nano-electronics. imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,650 people includes over 550 industrial residents and guest researchers. In 2008, imec's revenue (P&L) was 270 million euro.

Further information on imec can be found at www.imec.be.

NOTE: Imec is a registered trademark for the activities of imec International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (imec vzw supported by the Flemish Government), imec the Netherlands (Stichting imec Nederland, part of Holst Centre which is supported by the Dutch Government) and imec Taiwan (imec Taiwan Co.).

For more information, please click here

Contacts:
Hanne Degans, IMEC Press Officer, T: +32 16 28 17 69,

Barbara Kalkis, Maestro Marketing & PR, T: +1 408 996 9975,

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Chip Technology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Events/Classes

Stretchy supercapacitors power wearable electronics August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Impressive List of Doctors, Scientists Coming to Vail for Scientific Summit: The Second Vail Scientific Summit Convenes the Greatest Minds in Regenerative Medicine and Science August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic