Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec presents new GaN-on-Si architecture for enhancement mode power switching devices

IMEC SiN/AlGaN/GaN field effect transistor
IMEC SiN/AlGaN/GaN field effect transistor

Abstract:
At this week's International Electron Devices Meeting, the nanoelectronics research center imec presents an innovative, simple and robust GaN-on-Si double heterostructure FET (field effect transistor) architecture for GaN-on-Si power switching devices. The architecture meets the normally off requirements of power switching circuits and is characterized by low leakage and high breakdown voltage, both essential parameters to reduce the power loss of high-power switching applications.

Imec presents new GaN-on-Si architecture for enhancement mode power switching devices

IEEE IEDM 2009, Baltimore, MD | Posted on December 8th, 2009

High-voltage power devices are traditionally based on Si-MOSFET structures. However, for a number of applications, Si power devices have reached the intrinsic material limits. GaN-compounds are nowadays the best candidates to replace Si power devices, thanks to their high band gap (excellent transport properties) and their high electrical breakdown field. However, the cost of GaN power devices is high. GaN-epilayers grown on large diameter Si wafers, potentially up to 200mm, offer a lower cost technology compared to other substrates.

Imec obtained a high-breakdown voltage of almost 1000V combined with low on-resistance by growing an SiN/AlGaN/GaN/AlGaN double heterostructure FET structure on a Si substrate. By combining its double heterostructure FET architecture with in-situ SiN grown in the same epitaxial sequence as the III-nitride layers, imec succeeded in obtaining e-mode device operation. This is typically required in applications for safety reasons. The fabrication is based on an optimized process for the selective removal of in-situ SiN. The resulting SiN/AlGaN/GaN/AlGaN double heterostructure FET is characterized by a high breakdown voltage of 980V, an excellent uniformity and a low dynamic specific on-resistance of 3.5 mW.cm2 that is well within the present state-of-the-art. These results hold the promise of a huge market opportunity for GaN-on-Si power devices.

Within imec's industrial affiliation program (IIAP) on GaN-on-Si technology, imec and its partners focus on the development of GaN technology for both power conversion and solid state lighting applications. An important goal of the program is to lower GaN technology cost by using large-diameter GaN-on-Si and hence by leveraging on the scale of economics. Imec invites both integrated device manufacturers and compound semiconductor industry to join the program. Partners can build on imec's extensive expertise in GaN and benefit from sharing of cost, risk and talent.

####

About IMEC
Imec performs world-leading research in nano-electronics. imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,650 people includes over 550 industrial residents and guest researchers. In 2008, imec's revenue (P&L) was 270 million euro.

Further information on imec can be found at www.imec.be.

NOTE: Imec is a registered trademark for the activities of imec International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (imec vzw supported by the Flemish Government), imec the Netherlands (Stichting imec Nederland, part of Holst Centre which is supported by the Dutch Government) and imec Taiwan (imec Taiwan Co.).

For more information, please click here

Contacts:
Hanne Degans, IMEC Press Officer, T: +32 16 28 17 69,

Barbara Kalkis, Maestro Marketing & PR, T: +1 408 996 9975,

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Chip Technology

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Nanoelectronics

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Events/Classes

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Arrowhead Pharmaceuticals to Host R&D Day on RNAi-Based Therapies September 1st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project