Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Semiconductor Research Corporation and Stanford University Demonstrate Advance That Could Extend Life of Cost-Effective Semiconductor Manufacturing

Abstract:
Semiconductor Research Corporation (SRC), the world's leading university-research consortium for semiconductors and related technologies, and researchers from Stanford University and Taiwan Semiconductor Manufacturing Company (TSMC) today announced they have developed the industry's first top-gated field effect transistor (FETs) and CMOS inverters featuring 20 nanometer (nm) contact holes using diblock copolymer lithography. This advance could help extend the manufacturability of semiconductors beyond conventional lithography methods, with the potential for enabling electronics makers to meet the demand for smaller, faster and cheaper devices.

Semiconductor Research Corporation and Stanford University Demonstrate Advance That Could Extend Life of Cost-Effective Semiconductor Manufacturing

Research Triangle Park, NC | Posted on December 7th, 2009

The ever-shrinking lithography processes for semiconductors have produced dramatic size, speed and cost benefits for the electronics industry. However, the industry faces certain physical and economic constraints as it moves to smaller transistor scales, or nodes. In particular, the industry has yet to find a manufacturing solution to patterning feature sizes beyond the 22nm node.

In recent years, researchers have begun to look at block copolymers, an organic material that is compatible with conventional semiconductor manufacturing processes, because a thin film of it, under the right conditions, can self-assemble into regular arrays of holes on the order of 20nm or smaller in diameter. This tiny, self-assembled swiss cheese of block copolymer can act as a stencil for creating electrical contacts to very small semiconductor devices.

Previous attempts at using block polymers have fallen short because the self-assembled holes were not aligned to existing electrical features on the semiconductor wafer. Now, the SRC-sponsored work by researchers from Stanford University and TSMC has produced the industry's first functional devices and circuits that employ diblock copolymer patterning for sub-22nm CMOS technologies on a full wafer scale.

"We believe this development will help to bring self-assembly closer to broad application in the semiconductor industry and will help increase the use of nanotechnology for advancements in electronics for years to come," said H.-S. Philip Wong, a professor of Electrical Engineering at Stanford University.

"Professor Wong's work demonstrates that diblock copolymers, via directed self-assembly, can enable several key integration steps in the fabrication of nanoscale devices," said Dan Herr, SRC director of Nanomanufacturing Sciences.

The research is expected to catalyze further innovations in the area of extensible nanomanufacturing and possibly be integrated into the manufacturing process in the next seven to 10 years.

More information about the research and results will be published in a paper entitled "Top-Gated FETs/Inverters with Diblock Copolymer Self-Assembled 20nm Contact Holes" and presented at IEEE's 2009 International Electron Devices Meeting in Baltimore, Md., on December 9. The paper is co-authored by graduate student, Li-Wen Chang and H.-S. Philip Wong of Stanford University, and T.L. Lee, Clement H. Wann, and C.Y. Chang of TSMC.

####

About Semiconductor Research Corporation
Celebrating 27 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America’s highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry.

For more information, please click here

Contacts:
Semiconductor Research Corporation
PO Box 12053
Research Triangle Park, NC 27709-2053
Phone: (919) 941-9400
Fax: (919) 941-9450

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Possible Futures

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Self Assembly

Searching for a nanotech self-organizing principle May 1st, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Researchers develop new semiconducting polymer for forthcoming flexible electronics April 21st, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Alliances/Trade associations/Partnerships/Distributorships

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic