Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Semiconductor Research Corporation and Stanford University Demonstrate Advance That Could Extend Life of Cost-Effective Semiconductor Manufacturing

Abstract:
Semiconductor Research Corporation (SRC), the world's leading university-research consortium for semiconductors and related technologies, and researchers from Stanford University and Taiwan Semiconductor Manufacturing Company (TSMC) today announced they have developed the industry's first top-gated field effect transistor (FETs) and CMOS inverters featuring 20 nanometer (nm) contact holes using diblock copolymer lithography. This advance could help extend the manufacturability of semiconductors beyond conventional lithography methods, with the potential for enabling electronics makers to meet the demand for smaller, faster and cheaper devices.

Semiconductor Research Corporation and Stanford University Demonstrate Advance That Could Extend Life of Cost-Effective Semiconductor Manufacturing

Research Triangle Park, NC | Posted on December 7th, 2009

The ever-shrinking lithography processes for semiconductors have produced dramatic size, speed and cost benefits for the electronics industry. However, the industry faces certain physical and economic constraints as it moves to smaller transistor scales, or nodes. In particular, the industry has yet to find a manufacturing solution to patterning feature sizes beyond the 22nm node.

In recent years, researchers have begun to look at block copolymers, an organic material that is compatible with conventional semiconductor manufacturing processes, because a thin film of it, under the right conditions, can self-assemble into regular arrays of holes on the order of 20nm or smaller in diameter. This tiny, self-assembled swiss cheese of block copolymer can act as a stencil for creating electrical contacts to very small semiconductor devices.

Previous attempts at using block polymers have fallen short because the self-assembled holes were not aligned to existing electrical features on the semiconductor wafer. Now, the SRC-sponsored work by researchers from Stanford University and TSMC has produced the industry's first functional devices and circuits that employ diblock copolymer patterning for sub-22nm CMOS technologies on a full wafer scale.

"We believe this development will help to bring self-assembly closer to broad application in the semiconductor industry and will help increase the use of nanotechnology for advancements in electronics for years to come," said H.-S. Philip Wong, a professor of Electrical Engineering at Stanford University.

"Professor Wong's work demonstrates that diblock copolymers, via directed self-assembly, can enable several key integration steps in the fabrication of nanoscale devices," said Dan Herr, SRC director of Nanomanufacturing Sciences.

The research is expected to catalyze further innovations in the area of extensible nanomanufacturing and possibly be integrated into the manufacturing process in the next seven to 10 years.

More information about the research and results will be published in a paper entitled "Top-Gated FETs/Inverters with Diblock Copolymer Self-Assembled 20nm Contact Holes" and presented at IEEE's 2009 International Electron Devices Meeting in Baltimore, Md., on December 9. The paper is co-authored by graduate student, Li-Wen Chang and H.-S. Philip Wong of Stanford University, and T.L. Lee, Clement H. Wann, and C.Y. Chang of TSMC.

####

About Semiconductor Research Corporation
Celebrating 27 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America’s highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry.

For more information, please click here

Contacts:
Semiconductor Research Corporation
PO Box 12053
Research Triangle Park, NC 27709-2053
Phone: (919) 941-9400
Fax: (919) 941-9450

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Self Assembly

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Four Scientists With Major Contributions to Research at Brookhaven Lab Named American Physical Society Fellows March 17th, 2015

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Announcements

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Alliances/Partnerships/Distributorships

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

Halas, Nordlander awarded Optical Society's R.W. Wood Prize: Rice University researchers recognized for pioneering nanophotonics March 21st, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE