Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Semiconductor Research Corporation and Stanford University Demonstrate Advance That Could Extend Life of Cost-Effective Semiconductor Manufacturing

Abstract:
Semiconductor Research Corporation (SRC), the world's leading university-research consortium for semiconductors and related technologies, and researchers from Stanford University and Taiwan Semiconductor Manufacturing Company (TSMC) today announced they have developed the industry's first top-gated field effect transistor (FETs) and CMOS inverters featuring 20 nanometer (nm) contact holes using diblock copolymer lithography. This advance could help extend the manufacturability of semiconductors beyond conventional lithography methods, with the potential for enabling electronics makers to meet the demand for smaller, faster and cheaper devices.

Semiconductor Research Corporation and Stanford University Demonstrate Advance That Could Extend Life of Cost-Effective Semiconductor Manufacturing

Research Triangle Park, NC | Posted on December 7th, 2009

The ever-shrinking lithography processes for semiconductors have produced dramatic size, speed and cost benefits for the electronics industry. However, the industry faces certain physical and economic constraints as it moves to smaller transistor scales, or nodes. In particular, the industry has yet to find a manufacturing solution to patterning feature sizes beyond the 22nm node.

In recent years, researchers have begun to look at block copolymers, an organic material that is compatible with conventional semiconductor manufacturing processes, because a thin film of it, under the right conditions, can self-assemble into regular arrays of holes on the order of 20nm or smaller in diameter. This tiny, self-assembled swiss cheese of block copolymer can act as a stencil for creating electrical contacts to very small semiconductor devices.

Previous attempts at using block polymers have fallen short because the self-assembled holes were not aligned to existing electrical features on the semiconductor wafer. Now, the SRC-sponsored work by researchers from Stanford University and TSMC has produced the industry's first functional devices and circuits that employ diblock copolymer patterning for sub-22nm CMOS technologies on a full wafer scale.

"We believe this development will help to bring self-assembly closer to broad application in the semiconductor industry and will help increase the use of nanotechnology for advancements in electronics for years to come," said H.-S. Philip Wong, a professor of Electrical Engineering at Stanford University.

"Professor Wong's work demonstrates that diblock copolymers, via directed self-assembly, can enable several key integration steps in the fabrication of nanoscale devices," said Dan Herr, SRC director of Nanomanufacturing Sciences.

The research is expected to catalyze further innovations in the area of extensible nanomanufacturing and possibly be integrated into the manufacturing process in the next seven to 10 years.

More information about the research and results will be published in a paper entitled "Top-Gated FETs/Inverters with Diblock Copolymer Self-Assembled 20nm Contact Holes" and presented at IEEE's 2009 International Electron Devices Meeting in Baltimore, Md., on December 9. The paper is co-authored by graduate student, Li-Wen Chang and H.-S. Philip Wong of Stanford University, and T.L. Lee, Clement H. Wann, and C.Y. Chang of TSMC.

####

About Semiconductor Research Corporation
Celebrating 27 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America’s highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry.

For more information, please click here

Contacts:
Semiconductor Research Corporation
PO Box 12053
Research Triangle Park, NC 27709-2053
Phone: (919) 941-9400
Fax: (919) 941-9450

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Possible Futures

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Chip Technology

A nano-roundabout for light December 10th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Self Assembly

Computers made of genetic material? HZDR researchers conduct electricity using DNA-based nanowires November 9th, 2016

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project