Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New System for Detection of Single Atoms

Abstract:
Scientists have devised a new technique for real-time detection of freely moving individual neutral atoms that is more than 99.7% accurate and sensitive enough to discern the arrival of a single atom in less than one-millionth of a second, about 20 times faster than the best previous methods.

New System for Detection of Single Atoms

College Park, MD | Posted on December 4th, 2009

The system, described in Advance Online Publication at the Nature Physics web site by researchers at the Joint Quantum Institute (JQI) in College Park, MD, and the Universidad de Concepción in Chile, employs a novel means of altering the polarization of laser light trapped between two highly-reflective mirrors, in effect letting the scientists "see" atoms passing through by the individual photons that they scatter.

The ability to detect single atoms and molecules is essential to progress in many areas, including quantum information research, chemical detection and biochemical analysis.

"Existing protocols have been too slow to detect moving atoms, making it difficult to do something to them before they are gone. Our work relaxes that speed constraint," says coauthor David Norris of JQI. "Moreover, it is hard to distinguish between a genuine detection and a random 'false positive' without collecting data over a large period of time. Our system both filters the signal and reduces the detection time."

The scientists trap and cool a small population of atoms (rubidium is used in the current experiment) in a vacuum enclosure in such a way that they drop slowly, one at a time, through a hole 1.5 millimeters wide at the bottom of the trap. The atom then falls about 8 centimeters until it enters a tiny chamber, or cavity, that is fitted on opposite sides with highly reflective mirrors that face one another at a distance of about 2 millimeters. Passing through the center of both mirrors is a laser beam of wavelength 780 nanometers - just slightly longer than visible red light. The beam excites the atom as it falls between the mirrors, causing it to reradiate the light in all directions.

That arrangement is a familiar one for labs studying the interaction of atoms and photons. The JQI system, however, has two distinctively unique features.

First, the researchers use two polarizations of cavity light simultaneously: one (horizontal) which is pumped in to efficiently excite the atoms, and the other (vertical) which only appears when emitted by an atom inside the cavity. Although the descent of the atom through the chamber takes only 5 millionths of a second, that is 200 times longer than it takes for the atom to become excited and shed a photon, so this process can happen multiple times before the atom is gone.

Second, they create a magnetic field inside the cavity, which causes the laser light polarization to rotate slightly when an atom is present. Known as the Faraday effect, this phenomenon is typically very weak when observed with a single atom. However, since the light reflecting between the mirrors passes by the atom about 10,000 times, the result is a much larger rotation of a few degrees. This puts significantly more of the laser light into the vertical polarization, making the atoms easier to "see."

The light eventually escapes from the cavity and is fed through a polarizing beamsplitter which routes photons with horizontal polarization to one detector, and vertical polarization to another. Each arriving photon generates a unique time stamp whenever it triggers its detector.

Although the detector for the vertically polarized light should only be sensitive to light coming from an atom in the cavity, it can be fooled occasionally by stray light in the room. But because there are multiple emissions from each atom, there will be a burst of photons whenever an atom passes between the mirrors. This is the signature that the researchers use to confirm an atom detection.

"The chief difficulty lies in verifying that our detector is really sensitive enough to see single atoms, and not just large groups of them," says team leader Luis A. Orozco of JQI. "Fortunately, the statistics of the light serve as a fingerprint for single-atom emission, and we were able to utilize that information in our system."

* "Photon Burst Detection of Single Atoms in an Optical Cavity," M.L. Terraciano, R. Olson Knell, D.G. Norris, J. Jing, A. Fernandez and L.A. Orozco, www.nature.com/nphys/index.html, DOI 10.1038/NPHYS1282.

####

About Joint Quantum Institute, University of Maryland
The Joint Quantum Institute is a research partnership between University of Maryland (UMD) and the National Institute of Standards and Technology, with the support and participation of the Laboratory for Physical Sciences.

Created in 2006 to pursue theoretical and experimental studies of quantum physics in the context of information science and technology, JQI is located on UMD's College Park campus.

For more information, please click here

Contacts:
JQI General Info:
Curt Suplee
301.405.2291

or send e-mail to

Copyright © Joint Quantum Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

New Book by Nobel Laureate Tells Story of Chemistry’s New Field: Fraser Stoddart explains the mechanical bond and where it is taking scientists November 11th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Quantum nanoscience

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project