Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > TEL Joins SEMATECH’s Front End Processes Program at UAlbany NanoCollege

Abstract:
Joint effort to accelerate and extend advanced memory and logic technologies

TEL Joins SEMATECH’s Front End Processes Program at UAlbany NanoCollege

Albany, NY and Tokyo, Japan | Posted on December 3rd, 2009

Tokyo Electron Limited (TEL) and SEMATECH today announced that TEL has joined SEMATECH's Front End Processes (FEP) program at the College of Nanoscale Science and Engineering's (CNSE) Albany NanoTech Complex. The joint partnership will establish a collaborative approach to develop new materials and processing techniques for extending CMOS logic and memory technologies.

As a member of this program, TEL will closely collaborate with SEMATECH's FEP research team at the UAlbany NanoCollege, with support from SEMATECH's facilities in Austin, TX. Specifically, TEL experts will leverage SEMATECH activities in advanced materials, device structures, and physical and electrical characterization infrastructure to develop cutting-edge new processes and associated tools.

"As device scaling becomes more and more difficult and as end products in electronics become more diversified, the integration of the processes, materials, and devices that will define next generations of CMOS and non-CMOS technology will become increasingly important," said Masayuki Tomoyasu, Senior Vice President of TEL Technology Center, America, LLC. "SEMATECH's FEP program blends innovation with practical solutions to meet technical and economic requirements and move the industry forward. SEMATECH provides the most suitable development foundation for TEL to apply our current wafer process knowledge to develop new techniques for extending advanced memory and logic technologies."

"TEL has been a valued partner of SEMATECH for many years and across many projects, including an ongoing strong interaction on 3D interconnects. Given their leadership in providing state-of-the-art tool solutions that are manufacturing friendly, we are very pleased to expand our partnership with TEL on advanced materials and device technologies," said Raj Jammy, SEMATECH's vice president of materials and emerging technologies. "Building on the success of past and present collaborations, we look forward to working closely with TEL to provide an excellent platform for development of leading edge memory and logic process solutions for future generation technologies."

Richard Brilla, vice president for strategy, alliances and consortia at CNSE, said, "We are delighted to welcome this new partnership between SEMATECH and TEL, both of which are among the global technology leaders engaged in next-generation nanoelectronics research and development at the UAlbany NanoCollege. This new collaboration will enable advanced materials and process development to support the critical needs of industry, while further demonstrating the success of the SEMATECH-CNSE alliance in accelerating leading-edge technologies."

The goal of SEMATECH's FEP program is to provide novel leading-edge materials, processes, structural modules and electrical and physical characterization solutions to support the continued scaling of logic and memory applications.

####

About SEMATECH
For over 20 years, SEMATECH® has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.

About TEL

TEL, established in 1963, is a leading supplier of innovative semiconductor and FPD production equipment worldwide. In Japan, TEL also distributes computer network related products and electronic components of global leading suppliers. To support this diverse product base, TEL is strategically located around the world. TEL is a publicly held company listed on the Tokyo Stock Exchange. www.tel.com

About CNSE

The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE’s Albany NanoTech Complex is the most advanced research enterprise of its kind at any university in the world. With over $5 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site at CNSE’s Albany NanoTech, from companies including IBM, AMD, GlobalFoundries, SEMATECH, Toshiba, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech. For more information, visit www.cnse.albany.edu.

For more information, please click here

Contacts:
Erica McGill
SEMATECH Media Relations
257 Fuller Road
Suite 2200
Albany, NY 12203
o: 518-649-1041
m: 518-487-8256

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project