Home > Press > In touch with molecules
![]() |
Electron current through two C60-molecules which are contacted with elec-trodes. As they are only one billionth of a meter in diameter, ultra high precision is needed in order to control their distance. Copyright: CAU, Source: prl.aps.org |
Abstract:
The performance of modern electronics increases steadily on a fast pace thanks to the ongoing miniaturization of the utilized components. However, severe problems arise due to quantum-mechanical phenomena when conventional structures are simply made smaller and reach the nanometer scale. Therefore current research focuses on the so-called bottom-up approach: the engineering of functional structures with the smallest possible building blocks - single atoms and molecules.
For the first time a collaboration of researchers across Europe now achieved to investigate the electrical behaviour of only two C60 molecules touching each other. The molecule which is shaped like a football was discovered in 1985 and since then has attracted tremendous attention by researchers all over the world due to its unique chemistry and potential technological applications in nanotechnology, materials science and electronics.
The findings of the researchers from institutes in Germany, France, Spain and Denmark were published in the latest issue of the prestigious magazine Physical Review Letters. A scanning tunnelling microscope (STM) was used to construct an ultra small electrical circuit comprised of only two C60 molecules, each just 1 nanometer in diameter. The researchers first picked up a single C60 molecule with the STM tip and thereafter approached a second molecule with a precision of a few trillionths of meters. During this controlled approach the physicists were able to measure the electrical current that flows between the two molecules. Understanding this current, which depends critically on the distance between the molecules, is important for utilizing molecules in future electronics.
The investigation revealed that the electrical current does not flow easily between the two touching C60 molecules - the conductance is 100 times smaller than for a single molecule. This finding is crucial for future devices with closely packed molecules as it indicates that leakage currents between neighbouring circuits will be controllable.
These experimental findings are strongly supported by quantum-mechanical calculations which too come to the result of poor electrical conductivity between two C60 molecules.
The extreme precision of manipulation and control of single molecules pre-sented in this work open up a new route for exploring other promising mole-cules. The deeper understanding of electrical current on the nanometer scale is an essential step towards novel molecular nanoelectronics.
###
The published article is available at: www.uni-kiel.de/download/pm/2009/2009-114-molekuele.pdf
####
About Kiel University
The University of Kiel (German Christian-Albrechts-Universität zu Kiel, CAU) is a university in the city of Kiel, Germany. It was founded in 1665 as the Academia Holsatorum Chiloniensis by Christian Albert, Duke of Holstein-Gottorp and has approximately 23,000 students today. The University of Kiel is the largest, oldest, and most prestigious in the state of Schleswig-Holstein.
From Wikipedia, the free encyclopedia
For more information, please click here
Contacts:
Prof. Dr. Richard Berndt
Institut für Experimentelle und Angewandte Physik
Christian-Albrechts-Universität, D-24098 Kiel
Phone: +49 431 8803946
Dr. Guillaume Schull
Pressent Address: Institut de Physique et de Chimie de Strasbourg
Universite Louis Pasteur
CNRS UMR 7504, F-67034 Strasbourg
Phone: +33 388 107 172
Copyright © Eurekalert
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Stability of perovskite solar cells reaches next milestone January 27th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Chip Technology
Manufacturing advances bring material back in vogue January 20th, 2023
Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023
Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second January 20th, 2023
Nanoelectronics
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022
Announcements
Temperature-sensing building material changes color to save energy January 27th, 2023
Quantum nanoscience
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |