Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > In touch with molecules

Electron current through two C60-molecules which are contacted with elec-trodes. As they are only one billionth of a meter in diameter, ultra high precision is needed in order to control their distance. 
Copyright: CAU, Source: prl.aps.org
Electron current through two C60-molecules which are contacted with elec-trodes. As they are only one billionth of a meter in diameter, ultra high precision is needed in order to control their distance. Copyright: CAU, Source: prl.aps.org

Abstract:
The performance of modern electronics increases steadily on a fast pace thanks to the ongoing miniaturization of the utilized components. However, severe problems arise due to quantum-mechanical phenomena when conventional structures are simply made smaller and reach the nanometer scale. Therefore current research focuses on the so-called bottom-up approach: the engineering of functional structures with the smallest possible building blocks - single atoms and molecules.

In touch with molecules

Kiel, Germany | Posted on November 12th, 2009

For the first time a collaboration of researchers across Europe now achieved to investigate the electrical behaviour of only two C60 molecules touching each other. The molecule which is shaped like a football was discovered in 1985 and since then has attracted tremendous attention by researchers all over the world due to its unique chemistry and potential technological applications in nanotechnology, materials science and electronics.

The findings of the researchers from institutes in Germany, France, Spain and Denmark were published in the latest issue of the prestigious magazine Physical Review Letters. A scanning tunnelling microscope (STM) was used to construct an ultra small electrical circuit comprised of only two C60 molecules, each just 1 nanometer in diameter. The researchers first picked up a single C60 molecule with the STM tip and thereafter approached a second molecule with a precision of a few trillionths of meters. During this controlled approach the physicists were able to measure the electrical current that flows between the two molecules. Understanding this current, which depends critically on the distance between the molecules, is important for utilizing molecules in future electronics.

The investigation revealed that the electrical current does not flow easily between the two touching C60 molecules - the conductance is 100 times smaller than for a single molecule. This finding is crucial for future devices with closely packed molecules as it indicates that leakage currents between neighbouring circuits will be controllable.

These experimental findings are strongly supported by quantum-mechanical calculations which too come to the result of poor electrical conductivity between two C60 molecules.

The extreme precision of manipulation and control of single molecules pre-sented in this work open up a new route for exploring other promising mole-cules. The deeper understanding of electrical current on the nanometer scale is an essential step towards novel molecular nanoelectronics.

###

The published article is available at: www.uni-kiel.de/download/pm/2009/2009-114-molekuele.pdf

####

About Kiel University
The University of Kiel (German Christian-Albrechts-Universität zu Kiel, CAU) is a university in the city of Kiel, Germany. It was founded in 1665 as the Academia Holsatorum Chiloniensis by Christian Albert, Duke of Holstein-Gottorp and has approximately 23,000 students today. The University of Kiel is the largest, oldest, and most prestigious in the state of Schleswig-Holstein.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Prof. Dr. Richard Berndt
Institut für Experimentelle und Angewandte Physik
Christian-Albrechts-Universität, D-24098 Kiel
Phone: +49 431 8803946


Dr. Guillaume Schull
Pressent Address: Institut de Physique et de Chimie de Strasbourg
Universite Louis Pasteur
CNRS UMR 7504, F-67034 Strasbourg
Phone: +33 388 107 172

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Chip Technology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Nanoelectronics

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Quantum nanoscience

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project