Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > In touch with molecules

Electron current through two C60-molecules which are contacted with elec-trodes. As they are only one billionth of a meter in diameter, ultra high precision is needed in order to control their distance. 
Copyright: CAU, Source: prl.aps.org
Electron current through two C60-molecules which are contacted with elec-trodes. As they are only one billionth of a meter in diameter, ultra high precision is needed in order to control their distance. Copyright: CAU, Source: prl.aps.org

Abstract:
The performance of modern electronics increases steadily on a fast pace thanks to the ongoing miniaturization of the utilized components. However, severe problems arise due to quantum-mechanical phenomena when conventional structures are simply made smaller and reach the nanometer scale. Therefore current research focuses on the so-called bottom-up approach: the engineering of functional structures with the smallest possible building blocks - single atoms and molecules.

In touch with molecules

Kiel, Germany | Posted on November 12th, 2009

For the first time a collaboration of researchers across Europe now achieved to investigate the electrical behaviour of only two C60 molecules touching each other. The molecule which is shaped like a football was discovered in 1985 and since then has attracted tremendous attention by researchers all over the world due to its unique chemistry and potential technological applications in nanotechnology, materials science and electronics.

The findings of the researchers from institutes in Germany, France, Spain and Denmark were published in the latest issue of the prestigious magazine Physical Review Letters. A scanning tunnelling microscope (STM) was used to construct an ultra small electrical circuit comprised of only two C60 molecules, each just 1 nanometer in diameter. The researchers first picked up a single C60 molecule with the STM tip and thereafter approached a second molecule with a precision of a few trillionths of meters. During this controlled approach the physicists were able to measure the electrical current that flows between the two molecules. Understanding this current, which depends critically on the distance between the molecules, is important for utilizing molecules in future electronics.

The investigation revealed that the electrical current does not flow easily between the two touching C60 molecules - the conductance is 100 times smaller than for a single molecule. This finding is crucial for future devices with closely packed molecules as it indicates that leakage currents between neighbouring circuits will be controllable.

These experimental findings are strongly supported by quantum-mechanical calculations which too come to the result of poor electrical conductivity between two C60 molecules.

The extreme precision of manipulation and control of single molecules pre-sented in this work open up a new route for exploring other promising mole-cules. The deeper understanding of electrical current on the nanometer scale is an essential step towards novel molecular nanoelectronics.

###

The published article is available at: www.uni-kiel.de/download/pm/2009/2009-114-molekuele.pdf

####

About Kiel University
The University of Kiel (German Christian-Albrechts-Universität zu Kiel, CAU) is a university in the city of Kiel, Germany. It was founded in 1665 as the Academia Holsatorum Chiloniensis by Christian Albert, Duke of Holstein-Gottorp and has approximately 23,000 students today. The University of Kiel is the largest, oldest, and most prestigious in the state of Schleswig-Holstein.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Prof. Dr. Richard Berndt
Institut für Experimentelle und Angewandte Physik
Christian-Albrechts-Universität, D-24098 Kiel
Phone: +49 431 8803946


Dr. Guillaume Schull
Pressent Address: Institut de Physique et de Chimie de Strasbourg
Universite Louis Pasteur
CNRS UMR 7504, F-67034 Strasbourg
Phone: +33 388 107 172

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Chip Technology

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoelectronics

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Announcements

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project