Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon Nanotube Sponges

Abstract:
Tough Water-Repellent Sponges Absorb Oils and Solvents up to 180 Times Their Own Weight

Carbon Nanotube Sponges

China | Posted on November 9th, 2009

Scientists have invented a carbon-based sponge that can soak up organic pollutants, such as oils and solvents, from the surface of water. No water is absorbed and the sponge can then be wrung out and reused, like an ordinary household sponge. Absorbing up to 180 times its own weight in organic matter, the sponge is light and tough and has the potential to dramatically enhance oil spill cleanup.

Professors Anyuan Cao (Peking University) and Dehai Wu (Tsinghua University), who are publishing their breakthrough in Advanced Materials, say "the sponges have new properties that integrate the merits of fragile aerogels with their high surface area [the lowest density solid material known is an aerogel], and conventional soft materials with their robustness and flexibility."

Current commercial absorbents for oil spill recovery and industrial use tend to be based on cellulose or polypropylene. These materials can absorb only up to 20 times their own weight and are impractical for large spills, where dispersants are used. Dispersants allow the oil to become diluted, but it remains in the water. Other materials based on porous oxide-based materials or other polymers can absorb up to twice as much pollutant per weight, but generally need to be heated to remove the organic material. High-temperature heating is not practical on small scales or on ships, and a clear advantage of a squeezable sponge is that the oil can be readily recovered and reused. For other applications including solvent cleanup, the sponges can be heated to remove the pollutant, without affecting the properties of the sponges.

Cao and Wu's sponges are made from interconnected carbon nanotubes;­ tiny, strong and hollow cylinders of interconnected carbon atoms. In this instance the tubes are 30­50 nanometres across and tens to hundreds of micrometers long (a nanometre is 10­9 metres, or one millionth of a millimetre; a micrometre is 1000 times as long). The surface of the tubes is naturally hydrophobic (water-hating), therefore no further modification is needed for the sponges to repel water. At the same time, they love to absorb oil on their surface. As the sponges are over 99% porous or empty, they float on water and there is a lot of room for oil to be absorbed, leading to the extremely high capacity for retention ­ for example, 143 times the sponge's weight for diesel oil and 175 for ethylene glycol.

Lateral thinking was the key to the scientists' breakthrough. A major ambition among carbon nanotube researchers is to look for ways to make large lined-up arrays of the tubes. Cao and Wu, however, searched for a method that would make long tubes that were completely disordered. This randomness allows the tubes to slide past each other, allowing the sponge to be manually reduced in size by 95%, and bent or twisted without breaking (a video showing this is available on www.materialsviews.com/matview/display/en/1220/TEXT). As the sponge is squeezed, any oil or solvent in the cavities and on the surface of the tubes is expelled. To gain the best effect, the sponges first have to be filled with solvent and then compressed gently in a process called densification, but after this they are extremely robust and can be used potentially thousands of times. They swell to recover their original dimensions when exposed to oil or solvent and "a small densified pellet of sponge can quickly remove a spreading diesel oil film with an area up to 800 times that of the sponge", as illustrated in the accompanying figure. This effect occurs even if the sponge is placed at the edge of the spill.

Potential applications reach beyond oil spill recovery. According to Cao, "the nanotube sponges can be used as filters, membranes, or absorbents to remove bacteria or contaminants from liquid or gas. They could also be used as noise-absorption layers in houses, and soldiers might benefit by using these sponges in impact energy absorbing components while adding little weight. Thermally insulated clothing is also possible." Large-scale production is currently being investigated.

"Carbon Nanotube Sponges", X. C. Gui, J. Q. Wei, K. L. Wang, A. Y. Cao, H. W. Zhu. Y. Jia, Q. Shu, D. H. Wu, Advanced Materials, 2009, DOI:10.1002/adma.200902986

This paper is available online on www.materialsviews.com/matview/display/en/1220/TEXT

####

For more information, please click here

Contacts:
Prof. Anyuan Cao:
Department of Advanced Materials Processing Technology and Nanotechnology,
College of Engineering, Peking University,
Beijing 100871, P. R. China
www.coe.pku.edu.cn/subpage.asp?id=1645

Copyright © Wiley-VCH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Military

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Perfect colors, captured with one ultra-thin lens: No need for color correction -- Harvard physicists' flat optics, using nanotechnology, get it right the first time February 19th, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

New nanogel for drug delivery: Self-healing gel can be injected into the body and act as a long-term drug depot February 19th, 2015

Environment

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Purification of Industrial Wastewater Using Visible-Light Sensitive Photocatalysts February 24th, 2015

Nanocomposite Membranes Used in Iran for Water Desalination, Sweetening February 16th, 2015

Scientists in Iran Use Nanotechnology for Industrial Purification of Drinking Water February 13th, 2015

Home

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Materials - Next-generation insulation ... January 13th, 2015

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Textiles/Clothing

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts February 3rd, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE