Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon Nanotube Sponges

Abstract:
Tough Water-Repellent Sponges Absorb Oils and Solvents up to 180 Times Their Own Weight

Carbon Nanotube Sponges

China | Posted on November 9th, 2009

Scientists have invented a carbon-based sponge that can soak up organic pollutants, such as oils and solvents, from the surface of water. No water is absorbed and the sponge can then be wrung out and reused, like an ordinary household sponge. Absorbing up to 180 times its own weight in organic matter, the sponge is light and tough and has the potential to dramatically enhance oil spill cleanup.

Professors Anyuan Cao (Peking University) and Dehai Wu (Tsinghua University), who are publishing their breakthrough in Advanced Materials, say "the sponges have new properties that integrate the merits of fragile aerogels with their high surface area [the lowest density solid material known is an aerogel], and conventional soft materials with their robustness and flexibility."

Current commercial absorbents for oil spill recovery and industrial use tend to be based on cellulose or polypropylene. These materials can absorb only up to 20 times their own weight and are impractical for large spills, where dispersants are used. Dispersants allow the oil to become diluted, but it remains in the water. Other materials based on porous oxide-based materials or other polymers can absorb up to twice as much pollutant per weight, but generally need to be heated to remove the organic material. High-temperature heating is not practical on small scales or on ships, and a clear advantage of a squeezable sponge is that the oil can be readily recovered and reused. For other applications including solvent cleanup, the sponges can be heated to remove the pollutant, without affecting the properties of the sponges.

Cao and Wu's sponges are made from interconnected carbon nanotubes;­ tiny, strong and hollow cylinders of interconnected carbon atoms. In this instance the tubes are 30­50 nanometres across and tens to hundreds of micrometers long (a nanometre is 10­9 metres, or one millionth of a millimetre; a micrometre is 1000 times as long). The surface of the tubes is naturally hydrophobic (water-hating), therefore no further modification is needed for the sponges to repel water. At the same time, they love to absorb oil on their surface. As the sponges are over 99% porous or empty, they float on water and there is a lot of room for oil to be absorbed, leading to the extremely high capacity for retention ­ for example, 143 times the sponge's weight for diesel oil and 175 for ethylene glycol.

Lateral thinking was the key to the scientists' breakthrough. A major ambition among carbon nanotube researchers is to look for ways to make large lined-up arrays of the tubes. Cao and Wu, however, searched for a method that would make long tubes that were completely disordered. This randomness allows the tubes to slide past each other, allowing the sponge to be manually reduced in size by 95%, and bent or twisted without breaking (a video showing this is available on www.materialsviews.com/matview/display/en/1220/TEXT). As the sponge is squeezed, any oil or solvent in the cavities and on the surface of the tubes is expelled. To gain the best effect, the sponges first have to be filled with solvent and then compressed gently in a process called densification, but after this they are extremely robust and can be used potentially thousands of times. They swell to recover their original dimensions when exposed to oil or solvent and "a small densified pellet of sponge can quickly remove a spreading diesel oil film with an area up to 800 times that of the sponge", as illustrated in the accompanying figure. This effect occurs even if the sponge is placed at the edge of the spill.

Potential applications reach beyond oil spill recovery. According to Cao, "the nanotube sponges can be used as filters, membranes, or absorbents to remove bacteria or contaminants from liquid or gas. They could also be used as noise-absorption layers in houses, and soldiers might benefit by using these sponges in impact energy absorbing components while adding little weight. Thermally insulated clothing is also possible." Large-scale production is currently being investigated.

"Carbon Nanotube Sponges", X. C. Gui, J. Q. Wei, K. L. Wang, A. Y. Cao, H. W. Zhu. Y. Jia, Q. Shu, D. H. Wu, Advanced Materials, 2009, DOI:10.1002/adma.200902986

This paper is available online on www.materialsviews.com/matview/display/en/1220/TEXT

####

For more information, please click here

Contacts:
Prof. Anyuan Cao:
Department of Advanced Materials Processing Technology and Nanotechnology,
College of Engineering, Peking University,
Beijing 100871, P. R. China
www.coe.pku.edu.cn/subpage.asp?id=1645

Copyright © Wiley-VCH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Military

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Environment

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Home

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Materials - Next-generation insulation ... January 13th, 2015

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

Textiles/Clothing

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Laser-induced graphene 'super' for electronics: Rice University researchers test flexible, three-dimensional supercapacitors January 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE