Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Pinning Down Superconductivity to a Single Layer

This graphic shows the inside of the molecular beam epitaxy chamber where thin films are built layer by layer, showing an artists rendition of the film synthesis process.
This graphic shows the inside of the molecular beam epitaxy chamber where thin films are built layer by layer, showing an artists rendition of the film synthesis process.

Abstract:
Findings may lead to precision engineering of superconducting thin films for electronic devices

Pinning Down Superconductivity to a Single Layer

Upton, NY | Posted on October 30th, 2009

Using precision techniques for making superconducting thin films layer-by-layer, physicists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have identified a single layer responsible for one such material's ability to become superconducting, i.e., carry electrical current with no energy loss. The technique, described in the October 30, 2009, issue of Science, could be used to engineer ultrathin films with "tunable" superconductivity for higher-efficiency electronic devices.

"We wanted to answer a fundamental question about such films," said Brookhaven physicist and the group leader Ivan Bozovic. "Namely: How thin can the film be and still retain high-temperature superconductivity?"

The thinner the material (and the higher its transition temperature to a superconductor), the greater its potential for applications where the superconductivity can be controlled by an external electric field. "This type of control is difficult to achieve with thicker films, because an electric field does not penetrate into metals more than a nanometer or so," Bozovic explained.

To explore the limits of thinness, Bozovic's group synthesized a series of films based on the high-temperature superconducting cuprates (copper-oxides) — materials that carry current with no energy loss when cooled below a certain transition temperature (Tc). Since zinc is known to suppress the superconductivity in these materials, the scientists systematically substituted a small amount of zinc into each of the copper-oxide layers. Any layer where the zinc's presence had a suppressing effect would be clearly identified as essential to superconductivity in the film.

"Our measurements showed that the zinc doping had essentially no effect, except when placed in a single, well-defined layer. When the zinc was in that layer, the superconductivity was dramatically suppressed," Bozovic said.

The material studied by Bozovic's team was unusual in that it consists of layers of two materials, one metallic and one insulating, that are not superconductors on their own, but rather exhibit superconductivity at the interface between them.

The layer identified as essential to the superconductivity by the zinc-substitution experiment represents the second copper-oxide layer away from the interface. The scientists found that the presence of zinc had no effect on the transition temperature at which superconductivity sets in, about 32 kelvin (-241 Celsius), except when placed in that particular layer. In the latter case, the scientists observed a dramatic drop in the transition temperature to 18 kelvin (-255 Celsius). The reduction in transition temperature provides a clear indication that that particular layer is the "hot" one responsible for the relatively high temperature at which superconductivity normally sets in for this material.

"We now have a clean experimental proof that high-temperature superconductivity can exist, undiminished, in a single copper-oxide layer," Bozovic said. "This piece of information gives important input to our theoretical understanding of this phenomenon."

Bozovic explained that, in the material he studied, the electrons required for superconductivity actually come from the metallic material below the interface. They leak into the insulating material above the interface and achieve the critical level in that second copper-oxide layer.

But in principle, he says, there are other ways to achieve the same concentration of electrons in that single layer, for example, by doping achieved by applying electric fields. That would result in high-temperature superconductivity in a single copper-oxide layer measuring just 0.66 nanometers.

From a practical viewpoint, this discovery opens a path toward the fabrication of electronic devices with modulated, or tunable, superconducting properties which can be controlled by electric or magnetic fields.

"Electronic devices already consume a large fraction of our electricity usage — and this is growing fast." Bozovic continued. "Clearly, we will need less-power hungry electronics in the future." Superconductors, which operate without energy loss — particularly those that operate at warmer, more-practical temperatures — may be one way to go.

Bozovic's layer-by-layer synthesis method and ability to strategically alter individual layers' composition might also be used to explore and possibly control other electronic phenomena and properties that emerge at the interfaces between layered materials.

This research was funded by the DOE Office of Science.

####

About Brookhaven National Laboratories
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

Mona S. Rowe
(631) 344-5056

Copyright © Brookhaven National Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Thin films

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Nanoelectronics

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Discoveries

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project