Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Pinning Down Superconductivity to a Single Layer

This graphic shows the inside of the molecular beam epitaxy chamber where thin films are built layer by layer, showing an artists rendition of the film synthesis process.
This graphic shows the inside of the molecular beam epitaxy chamber where thin films are built layer by layer, showing an artists rendition of the film synthesis process.

Abstract:
Findings may lead to precision engineering of superconducting thin films for electronic devices

Pinning Down Superconductivity to a Single Layer

Upton, NY | Posted on October 30th, 2009

Using precision techniques for making superconducting thin films layer-by-layer, physicists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have identified a single layer responsible for one such material's ability to become superconducting, i.e., carry electrical current with no energy loss. The technique, described in the October 30, 2009, issue of Science, could be used to engineer ultrathin films with "tunable" superconductivity for higher-efficiency electronic devices.

"We wanted to answer a fundamental question about such films," said Brookhaven physicist and the group leader Ivan Bozovic. "Namely: How thin can the film be and still retain high-temperature superconductivity?"

The thinner the material (and the higher its transition temperature to a superconductor), the greater its potential for applications where the superconductivity can be controlled by an external electric field. "This type of control is difficult to achieve with thicker films, because an electric field does not penetrate into metals more than a nanometer or so," Bozovic explained.

To explore the limits of thinness, Bozovic's group synthesized a series of films based on the high-temperature superconducting cuprates (copper-oxides) materials that carry current with no energy loss when cooled below a certain transition temperature (Tc). Since zinc is known to suppress the superconductivity in these materials, the scientists systematically substituted a small amount of zinc into each of the copper-oxide layers. Any layer where the zinc's presence had a suppressing effect would be clearly identified as essential to superconductivity in the film.

"Our measurements showed that the zinc doping had essentially no effect, except when placed in a single, well-defined layer. When the zinc was in that layer, the superconductivity was dramatically suppressed," Bozovic said.

The material studied by Bozovic's team was unusual in that it consists of layers of two materials, one metallic and one insulating, that are not superconductors on their own, but rather exhibit superconductivity at the interface between them.

The layer identified as essential to the superconductivity by the zinc-substitution experiment represents the second copper-oxide layer away from the interface. The scientists found that the presence of zinc had no effect on the transition temperature at which superconductivity sets in, about 32 kelvin (-241 Celsius), except when placed in that particular layer. In the latter case, the scientists observed a dramatic drop in the transition temperature to 18 kelvin (-255 Celsius). The reduction in transition temperature provides a clear indication that that particular layer is the "hot" one responsible for the relatively high temperature at which superconductivity normally sets in for this material.

"We now have a clean experimental proof that high-temperature superconductivity can exist, undiminished, in a single copper-oxide layer," Bozovic said. "This piece of information gives important input to our theoretical understanding of this phenomenon."

Bozovic explained that, in the material he studied, the electrons required for superconductivity actually come from the metallic material below the interface. They leak into the insulating material above the interface and achieve the critical level in that second copper-oxide layer.

But in principle, he says, there are other ways to achieve the same concentration of electrons in that single layer, for example, by doping achieved by applying electric fields. That would result in high-temperature superconductivity in a single copper-oxide layer measuring just 0.66 nanometers.

From a practical viewpoint, this discovery opens a path toward the fabrication of electronic devices with modulated, or tunable, superconducting properties which can be controlled by electric or magnetic fields.

"Electronic devices already consume a large fraction of our electricity usage and this is growing fast." Bozovic continued. "Clearly, we will need less-power hungry electronics in the future." Superconductors, which operate without energy loss particularly those that operate at warmer, more-practical temperatures may be one way to go.

Bozovic's layer-by-layer synthesis method and ability to strategically alter individual layers' composition might also be used to explore and possibly control other electronic phenomena and properties that emerge at the interfaces between layered materials.

This research was funded by the DOE Office of Science.

####

About Brookhaven National Laboratories
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

Mona S. Rowe
(631) 344-5056

Copyright © Brookhaven National Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

An Archimedes' screw for groups of quantum particles November 19th, 2016

News and information

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Thin films

ANU invention to inspire new night-vision specs December 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Possible Futures

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Chip Technology

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Discoveries

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project