Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanostructured Integrated Circuit Detects Type and Severity of Cancer

Abstract:
A team of investigators from the University of Toronto have used nanomaterials to develop an inexpensive microchip sensitive enough to quickly determine the type and severity of a patient's cancer so that the disease can be detected earlier for more effective treatment. Their work, reported in two papers published in the journals ACS Nano and Nature Nanotechnology, could herald an era when inexpensive yet sophisticated molecular diagnostics will become commonplace.

Nanostructured Integrated Circuit Detects Type and Severity of Cancer

Bethesda, MD | Posted on October 29th, 2009

The researchers' new device can readily detect the signature biomarkers that indicate the presence of cancer at the cellular level, even though these biomolecules - genes that indicate aggressive or benign forms of the disease and differentiate subtypes of the cancer - are generally present only at low levels in biological samples. Analysis can be completed in 90 minutes, a significant improvement over the existing diagnostic procedures that generally take days.

"Today, it takes a room filled with computers to evaluate a clinically relevant sample of cancer biomarkers and the results aren't quickly available," said team co-leader Shana Kelley. "Our team was able to measure biomolecules on an electronic chip the size of your fingertip and analyse the sample within half an hour. The instrumentation required for this analysis can be contained within a unit the size of a BlackBerry."

The nanoelectrode device that Kelley, collaborator Edward Sargent, and their students created is able to detect disease-related genes without the use of PCR to amplify low-level DNA. The electrodes, which are the key component of the device, have a novel highly-branched nanostructured shape that can detect attomolar concentrations of DNA. Using arrays of electrodes, each differing in the degree of nanostructured branching, the investigators were able to construct a device capable of sensing DNA molecules over six orders of magnitude, overcoming the dynamic range issue - the ability to detect both common and rare molecules - that has plagued other devices.

The investigators fabricated these devices using a standard microchip production process known as photolithography to create the basic electrode grid needed to measure multiple biomarkers simultaneously, and then used a second technique known as electrodeposition to grow the branched nanostructures on the electrodes, controlling the size of each electrode by varying the time over which electrodeposition occurred. With the electrodes in place, the investigators then coated them with various DNA-binding molecules known as peptide-nucleic acids, or PNAs, that can be designed to bind to a specific gene sequence. When a piece of DNA binds to its complementary DNA or RNA molecule, it triggers a chemical reaction that alters the electrical signal generated by the associated electrode.

Using their device, the investigators analyzed messenger RNA samples from prostate cancer biopsies. Their analysis showed that the device can detect gene fusions characteristic of prostate cancer. More importantly, the device was able to distinguish between gene fusions associated with either fast- or slow-growing forms of prostate cancer.

The paper describing the construction of this nanobiosensor is titled, "Programming the detection limits of biosensors through controlled nanostructuring." An abstract of this paper is available at the journal's Web site.

View abstract here www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.276.html

The paper detailing the use of the nanobiosensor to detect and characterize cancers is titled, "Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit." An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.
As part of the Center for Strategic Scientific Initiatives which is led by NCI Deputy Director Dr. Anna Barker, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
(301) 496-1550

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Nanoelectronics

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Nanobiotechnology

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project