Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research and Markets: Transparent Conductive Films for Flexible Electronics 2010-2020

Abstract:
Research and Markets (www.researchandmarkets.com/research/e7900a/transparent_conduc) has announced the addition of the "Transparent Conductive Films for Flexible Electronics 2010-2020" report to their offering.

Research and Markets: Transparent Conductive Films for Flexible Electronics 2010-2020

Dublin, Ireland | Posted on October 27th, 2009

This report focuses on the requirements and achievements to date on the topic of flexible transparent conductors, where high transparency and high conductivity are required. Worldwide research and design efforts are presented, both from research institutes and companies that are developing the necessary materials and processes. Several technical solutions available are compared, and forecasts are given for the next 10 years.

Increasingly more and more flexible devices are required, from flexible displays for e-readers, OLEDs and other types to flexible photovoltaics and beyond. These devices require a conductor to close the layers of active materials, but that conductor needs to be transparent in applications such as displays and photovoltaics to allow light through. Today, transparent conductive oxides are widely used for rigid devices but these will become more expensive due to rare materials used, and are inadequate for most flexible electronics applications where they can easily crack under little strain. Alternatives are sought.

The main materials available for this purpose are:

* Transparent conductive oxides (TCOs)
* Organic materials, such as the most common PEDOT:PSS
* Carbon nanotubes (CNT) and graphene

Each have trade-offs between conductivity, transmittance, and flexibility. Each can be patterned in different ways. While sputtering will remain an important and high-volume technology for coating of rigid substrates like glass, solution-based processes including printing and the use of organic and nanoparticle materials have already gained a lot of traction and are expected to dominate the market for the flexible applications within a few years. Significant new developments are being made with both the materials used and how they can be deposited. This report addresses the performance of the different options and profiles organizations around the world that are developing better solutions. The biggest opportunity

In 2020, the biggest opportunity is for flexible OLEDs and flexible photovoltaics - however, both lack appropriate, low cost flexible barriers today, which delays the market penetration.

While ESD (electro static discharge) applications have moderate requirements concerning the properties of TCFs, demands in devices such as OLEDs are more complex. The main reason is that in that case, not only the standard properties as conductivity, transmittance and flexibility are important, but the interactions with other layers play an important role, namely charge carrier injection. In addition, for large area devices, homogeneity is more critical, especially when it comes to display and lighting applications. The human eye is more sensitive to changes in brightness than to changes in colour, and brightness of an light emitting device depends on the electrical conditions - voltage in the case of inorganic electroluminescence, current flow in the case of electrochromic and light-emitting semiconductors.

Market forecasts 2010-2020 IDTechEx find that the market for TCFs will be $0.24 million in 2010 - mainly used in research and development and used in small quantities for commercial devices. By 2017 TCFs will become a billion dollar market for printed and potentially printed electronics, reaching $3.39 billion in 2020, mainly due to photovoltaics and OLED displays. The report gives forecasts by component for ten years.

Who should buy this report For those that seek to address opportunities in this field, learn the latest progress from around the world, the challenges and market potential, this report is a must. Activities of 35 organizations from across the globe are covered.

Customers who purchase the report are entitled to one hour free consultancy with the publisher.

Key Topics Covered:

EXECUTIVE SUMMARY AND CONCLUSIONS

INTRODUCTION TO TRANSPARENT CONDUCTING FILMS (TCF)

APPLICATIONS AND REQUIRED PROPERTIES OF TCFS

* Electromagnetic shielding and Electrostatic coating
* Displays & Lighting
* Photovoltaics
* Security Applications

MAIN CRITERIA OF TCFS

* Transparency
* Conductivity
* Flexibility
* Cost
* Other parameters

MATERIALS USED FOR TCFS

* Doped oxide metals
* ITO Challenges: Cost and availability
* Organic Conductors
* Carbon Nanotubes and Graphene

MANUFACTURING OF TCFS

* TCOs
* Organic Materials
* CNT and Graphene

COMPANIES

FORECASTS FOR TCF FOR FLEXIBLE ELECTRONICS 2010-2020

* The potential significance of organic and printed inorganic electronics
* Forecasts for flexible electronics 2010-2020
* TCFs market size

REFERENCES

APPENDIX 1: IDTECHEX PUBLICATIONS AND CONSULTANCY

####

For more information, please click here

Contacts:
Research and Markets
Laura Wood
Senior Manager

U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Announcements

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Printing Flexible Graphene Supercapacitors December 1st, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project