Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study Shows How Nanotubes Affect Lining of Lungs

Inhaled carbon nanotubes accumulate within cells at the pleural lining of the lung as visualized by light microscopy.
Inhaled carbon nanotubes accumulate within cells at the pleural lining of the lung as visualized by light microscopy.

Abstract:
Tiny carbon nanotubes are being considered for use in everything from sports equipment to medical applications, but a great deal remains unknown about whether these materials cause respiratory or other health problems. Now a collaborative study from North Carolina State University, The Hamner Institutes for Health Sciences, and the National Institute of Environmental Health Sciences shows that inhaling these nanotubes can affect the outer lining of the lung, though the effects of long-term exposure remain unclear.

Study Shows How Nanotubes Affect Lining of Lungs

Raleigh, NC | Posted on October 26th, 2009

Using mice in an animal model study, the researchers set out to determine what happens when multi-walled carbon nanotubes are inhaled. Specifically, researchers wanted to determine whether the nanotubes would be able to reach the pleura, which is the tissue that lines the outside of the lungs and is affected by exposure to certain types of asbestos fibers which cause the cancer mesothelioma. The researchers used inhalation exposure and found that inhaled nanotubes do reach the pleura and cause health effects.

Short-term studies described in the paper do not allow conclusions about long-term responses such as cancer. However, the inhaled nanotubes "clearly reach the target tissue for mesothelioma and cause a unique pathologic reaction on the surface of the pleura, and caused fibrosis," says Dr. James Bonner, associate professor of environmental and molecular toxicology at NC State and senior author of the study. The "unique reaction" began within one day of inhalation of the nanotubes, when clusters of immune cells (lymphocytes and monocytes) began collecting on the surface of the pleura. Localized fibrosis, or scarring on parts of the pleural surface that is also found with asbestos exposure, began two weeks after inhalation.

The study showed the immune response and fibrosis disappeared within three months of exposure. However, this study used only a single exposure to the nanotubes. "It remains unclear whether the pleura could recover from chronic, or repeated, exposures," Bonner says. "More work needs to be done in that area and it is completely unknown at this point whether inhaled carbon nanotubes will prove to be carcinogenic in the lungs or in the pleural lining."

The mice received a single inhalation exposure of six hours as part of the study, and the effects on the pleura were only evident at the highest dose used by the researchers - 30 milligrams per cubic meter (mg/m3). The researchers found no health effects in the mice exposed to the lower dose of one mg/m3.

The study, "Inhaled Carbon Nanotubes Reach the Sub-Pleural Tissue in Mice," was co-authored by Bonner, Dr. Jessica Ryman-Rasmussen, Dr. Arnold Brody, and Dr. Jeanette Shipley-Phillips of NC State, Dr. Jeffrey Everitt who is an adjunct faculty at NC State, Dr. Mark Cesta of the National Institute of Environmental Health Sciences (NIEHS), Earl Tewksbury, Dr. Owen Moss, Dr. Brian Wong, Dr. Darol Dodd and Dr. Melvin Andersen of The Hamner Institutes for Health Sciences. The study is published in the Oct. 25 issue of Nature Nanotechnology and was funded by The Hamner Institutes for Health Sciences, NIEHS and NC State's College of Agriculture and Life Sciences.

Note to Editors: The presentation abstract follows.

"Inhaled Carbon Nanotubes Reach the Sub-Pleural Tissue in Mice"

Authors: Jessica Ryman-Rasmussen, Arnold Brody, Jeanette Shipley-Phillips, James Bonner, Jeffrey Everitt, North Carolina State University; Mark Cesta, National Institute of Environmental Health Sciences; Earl Tewksbury, Owen Moss, Brian Wong, Darol Dodd, Melvin Andersen, The Hamner Institutes for Health Sciences.

Published: Oct. 25, 2009, Nature Nanotechnology.

Abstract: Carbon nanotubes are shaped like fibres and can stimulate inflammation at the surface of the peritoneum when injected into the abdominal cavity of mice, raising concerns that inhaled nanotubes may cause pleural fibrosis and/or mesothelioma. Here, we show that multiwalled carbon nanotubes reach the subpleura in mice after a single inhalation exposure of 30 mg m-3 for 6 h. Nanotubes were embedded in the subpleural wall and within subpleural macrophages. Mononuclear cell aggregates on the pleural surface increased in number and size after 1 day and nanotube-containing macrophages were observed within these foci. Subpleural fibrosis unique to this form of nanotubes increased after 2 and 6 weeks following inhalation. None of these effects was seen in mice that inhaled carbon black nanoparticles or a lower dose of nanotubes (1 mg m-3). This work suggests that minimizing inhalation of nanotubes during handling is prudent until further long-term assessments are conducted.

####

About North Carolina State University
With more than 31,000 students and nearly 8,000 faculty and staff, North Carolina State University is a comprehensive university known for its leadership in education and research, and globally recognized for its science, technology, engineering and mathematics leadership.

NC State students, faculty and staff are focused. As one of the leading land-grant institutions in the nation, NC State is committed to playing an active and vital role in improving the quality of life for the citizens of North Carolina, the nation and the world.

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. James Bonner
919.515.8615

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Nanomedicine

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Sports

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

What makes penguin feathers ice-proof February 24th, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

New stretchable, wearable sensor made with chewing gum (video) December 2nd, 2015

Safety-Nanoparticles/Risk management

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

SUN shares its latest achievements during the 3rd Annual Project Meeting November 1st, 2016

The Sustainable Nanotechnologies Project’s Final Events: Bringing Nano Environmental Health and Safety Assessment to the Wider Discussion on Risk Governance of Key Enabling Technologies November 1st, 2016

Exploding smartphones: What's the silent danger lurking in our rechargeable devices? New research identifies toxic emissions released by lithium-ion batteries October 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project