Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Penn Study: Transforming Nanowires Into Nano-Tools Using Cation Exchange Reactions

Abstract:
A team of engineers from the University of Pennsylvania has transformed simple nanowires into reconfigurable materials and circuits, demonstrating a novel, self-assembling method for chemically creating nanoscale structures that are not possible to grow or obtain otherwise.

Penn Study: Transforming Nanowires Into Nano-Tools Using Cation Exchange Reactions

Philadelphia, PA | Posted on October 24th, 2009

The research team, using only chemical reactants, transformed semiconducting nanowires into a variety of useful, nanoscale materials including nanoscale metal strips with periodic stripes and semiconducting patterns, purely metallic nanowires, radial heterostructures and hollow semiconducting nanotubes in addition to other morphologies and compositions.

Researchers used ion exchange, one of the two most common techniques for solid phase transformation of nanostructures. Ion ( cation/anion ) exchange reactions exchange positive or negative ions and have been used to modify the chemical composition of inorganic nanocrystals, as well as create semiconductor superlattice structures. It is the chemical process, for example, that turns hard water soft in many American households.

Future applications of nanomaterials in electronics, catalysis, photonics and bionanotechnology are driving the exploration of synthetic approaches to control and manipulate the chemical composition, structure and morphology of these materials. To realize their full potential, it is desirable to develop techniques that can transform nanowires into tunable but precisely controlled morphologies, especially in the gas-phase, to be compatible with nanowire growth schemes. The assembly, however, is an expensive and labor-intensive process that prohibits cost-effective production of these materials.

Recent research in the field has enabled the transformation of nanomaterials via solid-phase chemical reactions into nonequilibrium, or functional structures that cannot be obtained otherwise.

In this study, researchers transformed single-crystalline cadmium sulfide nanowires into composition-controlled nanowires, core−shell heterostructures, metal-semiconductor superlattices, single-crystalline nanotubes and metallic nanowires by utilizing size-dependent cation-exchange reactions along with temperature and gas-phase reactant delivery control. This versatile, synthetic ability to transform nanowires offers new opportunities to study size-dependent phenomena at the nanoscale and tune their chemical/physical properties to design reconfigurable circuits.

Researchers also found that the speed of the cation exchange process was determined by the size of the starting nanowire and that the process temperature affected the final product, adding new information to the conditions that affect reaction rates and assembly.

"This is almost like magic that a single-component semiconductor nanostructure gets converted into metal-semiconductor binary superlattice, a completely hollow but single crystalline nanotube and even a purely metallic material," said Ritesh Agarwal, assistant professor in the Department of Materials Science and Engineering at Penn. "The important thing here is that these transformations cannot take place in bulk materials where the reaction rates are incredibly slow or in very small nanocrystals where the rates are too fast to be precisely controlled. These unique transformations take place at 5-200 nanometer-length scales where the rates can be controlled very accurately to enable such intriguing products. Now we are working with theoreticians and designing new experiments to unravel this 'magic' at the nanoscale."

The fundamental revelation in this study is a further clarification of nanoscale chemical phenomena. The study also provides new data on how manufacturers can assemble these tiny circuits, electrically connecting nanoscale structures through chemical self-assembly.

It also opens up new possibilities for the transformation of nanoscale materials into the tools and circuits of the future, for example, self-assembling nanoscale electrical contacts to individual nanoscale components, smaller electronic and photonic devices such as a series of electrically connected quantum dots for LEDs or transistors, as well as improved storage capacities for batteries.

The study, published in the current issue of the journal Nano Letters, was conducted by Bin Zhang, Yeonwoong Jung, Lambert Van Vug and Agarwal of the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science.

The work was supported by a National Science Foundation Career Award and a Penn Materials Research Science and Engineering Center grant.

####

For more information, please click here

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Govt.-Legislation/Regulation/Funding/Policy

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an open system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Chip Technology

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Self Assembly

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Discoveries

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Announcements

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project