Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Material Could Efficiently Power Tiny Generators

Xudong Wang
Xudong Wang

Abstract:
To power a very small device like a pacemaker or a transistor, you need an even smaller generator. The components that operate the generator are smaller yet, and the efficiency of those foundational components is critical to the performance of the overall device.

New Material Could Efficiently Power Tiny Generators

Madison, WI | Posted on October 22nd, 2009

For his Ph.D. at the Georgia Institute of Technology, University of Wisconsin-Madison materials science and engineering assistant professor Xudong Wang was part of a team that developed a piezoelectric nanogenerator and experimented with a variety of materials to power it.

The team found that zinc oxide nanowires, which have six-sided, column-like crystals, could produce 10 nanowatts per square centimeter by converting mechanical energy into electricity. The mechanical energy could come from environmental sources as varied as wind, car engines, human breathing, blood flow, body movements, or acoustic and ultrasonic vibrations.

While the advance was exciting, the zinc oxide nanowires had a low efficiency rate, and now at UW-Madison, Wang is tackling this challenge by researching a new material that could make the nanogenerator more efficient and powerful. An optimized nanogenerator could power small devices with a wide range of applications, such as LEDs, MEMS, transistors and biomedical devices such as pacemakers, robots, sensors or sensor diodes.

Wang is developing ferroelectric materials that could produce nanowires with 10 times the electric potential of the original zinc oxide ones. The increase occurs because the crystal of a ferroelectric material is made of spatially unbalanced atoms that produce automatic, permanent polarization in the material. When Wang introduces strain inside this unbalanced crystal, the polarization is enhanced, creating a significant amount of electric potential.

Very little mechanical energy would be needed to power the new nanogenerator because even a small amount of displacement has a larger effect on nanoscale materials than regular materials - a theory Wang intends to prove in his lab.

One challenge is fabricating the ferroelectric nanowires, which is a more complicated process than fabricating zinc oxide nanowires. To grow the ferroelectric nanowires, Wang uses a molten salt process. Molten sodium chloride acts as the reaction medium to assist the nanowires in self-assembling from precursors at around 1,500 degrees Fahrenheit. Each nanowire is 10,000 times smaller than a single human hair.

"We are currently investigating how much potential can be generated by such nanowires when they are deflected using atomic force microscopy," Wang says.

Wang's ultimate goal is to make a real nanogenerator capable of powering a variety of small devices. Since the generator would require such a small amount of power from sources that are continuously providing energy, it could serve essentially as an eternal battery.

####

About University of Wisconsin-Madison
Come see for yourself what makes UW–Madison such a vibrant living and learning community. Whether you are a prospective student, a history buff, a fan of Big Ten athletics, a performing arts aficionado — or simply someone who enjoys learning new things — we are here to help you experience our campus firsthand.

For more information, please click here

Contacts:
Xudong Wang
608-890-2667


Sandra Knisely
608-265-8592

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

CLAIRE brings electron microscopy to soft materials: Berkeley researchers develop breakthrough technique for noninvasive nanoscale imaging May 14th, 2015

QD Vision to Showcase Quantum Dot “Firsts” at Display Week 2015: Executives will present, demo current and future quantum dot technology May 13th, 2015

MEMS

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

Announcements

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project