Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Material Could Efficiently Power Tiny Generators

Xudong Wang
Xudong Wang

Abstract:
To power a very small device like a pacemaker or a transistor, you need an even smaller generator. The components that operate the generator are smaller yet, and the efficiency of those foundational components is critical to the performance of the overall device.

New Material Could Efficiently Power Tiny Generators

Madison, WI | Posted on October 22nd, 2009

For his Ph.D. at the Georgia Institute of Technology, University of Wisconsin-Madison materials science and engineering assistant professor Xudong Wang was part of a team that developed a piezoelectric nanogenerator and experimented with a variety of materials to power it.

The team found that zinc oxide nanowires, which have six-sided, column-like crystals, could produce 10 nanowatts per square centimeter by converting mechanical energy into electricity. The mechanical energy could come from environmental sources as varied as wind, car engines, human breathing, blood flow, body movements, or acoustic and ultrasonic vibrations.

While the advance was exciting, the zinc oxide nanowires had a low efficiency rate, and now at UW-Madison, Wang is tackling this challenge by researching a new material that could make the nanogenerator more efficient and powerful. An optimized nanogenerator could power small devices with a wide range of applications, such as LEDs, MEMS, transistors and biomedical devices such as pacemakers, robots, sensors or sensor diodes.

Wang is developing ferroelectric materials that could produce nanowires with 10 times the electric potential of the original zinc oxide ones. The increase occurs because the crystal of a ferroelectric material is made of spatially unbalanced atoms that produce automatic, permanent polarization in the material. When Wang introduces strain inside this unbalanced crystal, the polarization is enhanced, creating a significant amount of electric potential.

Very little mechanical energy would be needed to power the new nanogenerator because even a small amount of displacement has a larger effect on nanoscale materials than regular materials - a theory Wang intends to prove in his lab.

One challenge is fabricating the ferroelectric nanowires, which is a more complicated process than fabricating zinc oxide nanowires. To grow the ferroelectric nanowires, Wang uses a molten salt process. Molten sodium chloride acts as the reaction medium to assist the nanowires in self-assembling from precursors at around 1,500 degrees Fahrenheit. Each nanowire is 10,000 times smaller than a single human hair.

"We are currently investigating how much potential can be generated by such nanowires when they are deflected using atomic force microscopy," Wang says.

Wang's ultimate goal is to make a real nanogenerator capable of powering a variety of small devices. Since the generator would require such a small amount of power from sources that are continuously providing energy, it could serve essentially as an eternal battery.

####

About University of Wisconsin-Madison
Come see for yourself what makes UW–Madison such a vibrant living and learning community. Whether you are a prospective student, a history buff, a fan of Big Ten athletics, a performing arts aficionado — or simply someone who enjoys learning new things — we are here to help you experience our campus firsthand.

For more information, please click here

Contacts:
Xudong Wang
608-890-2667


Sandra Knisely
608-265-8592

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New Atomic Force Microscope to study piezoelectrics at the nanoscale October 29th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project