Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Argonne scientists find new set of multiferroic materials: Breakthrough resulted from collaborative research with universities

Abstract:
The trail to a new multiferroic started with the theories of a U.S. Department of Energy's (DOE) Argonne National Laboratory scientist and ended with a multidisciplinary collaboration that created a material with potential impact on next generation electronics.

Argonne scientists find new set of multiferroic materials: Breakthrough resulted from collaborative research with universities

Argonne,IL | Posted on October 19th, 2009

Argonne scientist Craig Fennie's principles of microscopic materials design predicted that the high pressure form of FeTiO3 would have both weak ferromagnetism and ferroelectric polarization, an unusual combination in a single material.

"We were able to take the theory and, through targeted synthesis and measurement, prove that FeTiO3 has both weak ferromagnetism and ferroelectricity, just as Craig predicted," Argonne scientist John Mitchell said. "Success in this materials design and discovery project would not have been possible without a collaborative team involving several disciplines and talents from across the lab and indeed the country."

Scientists from Argonne's materials science division and Center for Nanoscale Materials along with scientists from Pennsylvania State University, University of Chicago and Cornell University used piezoresponse force microscopy, optical second harmonic generation and magnetometry to show ferroelectricity at and below room temperature and weak ferromagnetism below 120 Kelvin for polycrystalline FeTiO3 synthesized at high pressure.

Multiferroic materials show both magnetism and polar order, which are seemingly contradictory properties. Magnetic ferroelectrics may have applications in memory, sensors, actuators and other multifunctional devices by acting as magnetic switches when their electric fields are reversed.

Multiferroic - add one

This project was recently published in Physical Review Letters and will be featured in the upcoming Advanced Photon Source annual report.

Funding for this research was provided by the U.S. Department of Energy, Office of Science.

####

About The Center for Nanoscale Materials at Argonne National Laboratory
The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

For more information, please click here

Contacts:
Brock Cooper
Media Relations Specialist
Argonne National Laboratory
(630) 252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Laboratories

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Chip Technology

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Discoveries

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Materials/Metamaterials

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Research partnerships

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project