Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Growing geodesic carbon nanodomes

Carbon atoms form dome structures on iridium substrates, en route to forming larger scale graphene sheets.  Image courtesy of Alan Stonebraker.
Carbon atoms form dome structures on iridium substrates, en route to forming larger scale graphene sheets. Image courtesy of Alan Stonebraker.

Abstract:
Tiny carbon islands bubble up at the center to form nanoscopic geodesic domes

Growing geodesic carbon nanodomes

College Park, MD | Posted on October 15th, 2009

Researchers analyzing the assembly of graphene (sheets of carbon only one atom thick) on a surface of iridium have found that the sheets grow by first forming tiny carbon domes. The discovery offers new insight into the growth of graphene layers and points the way to possible methods for assembling components of graphene-based computer circuits.

Paolo Lacovig, Monica Pozzo, Dario Alfè, Paolo Vilmercati, Alessandro Baraldi, and Silvano Lizzit at institutions in Italy, the UK and USA report their discovery in a paper appearing October 12 in the journal Physical Review Letters. The researchers' spectroscopic study suggests that graphene grows in the form of tiny islands built of concentric rings of carbon atoms. The islands are strongly bonded to the iridium surface at their perimeters, but are not bonded to the iridium at their centers, which causes them to bulge upward in the middle to form minuscule geodesic domes. By adjusting the conditions as the carbon is deposited on the iridium, the researchers could vary the size of the carbon domes from a few nanometers to hundreds of nanometers across.

Investigating the formation of graphene nanodomes helps physicists to understand and control the production of graphene sheets. In combination with methods for adjusting the conductivity of graphene and related materials, physicists hope to replace electronics made of silicon and metal with tiny, efficient carbon-based chips.

Jorge Sofo and Renee Diehl (Penn State University) highlight the graphene nanodome research in a Viewpoint in the October 12 issue of Physics (physics.aps.org).

Also in Physics: Clearing Up Electron Microscopy Aberrations, and Yoctosecond Flashes from Quark Gluon Plasmas

A Viewpoint by Robert Klie (University of Illinois at Chicago) describes an approach for reducing aberrations in electron microscopy, setting a new standard for low-energy imaging. And Abishek Agarwal (American Physical Society) offers a Synopsis of a model that suggests that quark-gluon plasmas produced in particle colliders could emit the briefest light bursts yet, potentially offering illumination for ultra-fast images of high speed events in atomic and molecular experiments

About APS Physics: APS Physics (physics.aps.org) publishes expert written commentaries and highlights of papers appearing in the journals of the American Physical Society.

####

About American Physical Society
The American Physical Society was founded on May 20, 1899, when 36 physicists gathered at Columbia University for that purpose. They proclaimed the mission of the new Society to be "to advance and diffuse the knowledge of physics", and in one way or another the APS has been at that task ever since. In the early years, virtually the sole activity of the APS was to hold scientific meetings, initially four per year. In 1913, the APS took over the operation of the Physical Review, which had been founded in 1893 at Cornell, and journal publication became its second major activity. Physical Review was followed by Reviews of Modern Physics in 1929, and by Physical Review Letters in 1958. Over the years, Physical Review has subdivided into five separate sections as the fields of physics have proliferated and the number of submissions grew.

In more recent years, the activities of the Society have broadened considerably. Stimulated by the increase in Federal funding in the period after the second World War, and even more by the increased public involvement of scientists in the nineteen sixties, APS is active in public and governmental affairs, and in the international physics community. In addition, the Society conducts extensive programs in education, public outreach, and media relations. APS has fourteen divisions and nine topical groups covering all areas of physics research. There are six forums that reflect the interest of its 46,000 members in broader issues, and eight sections organized by geographical region.

In 1999, the APS celebrated its Centennial with the biggest-ever physics meeting in Atlanta, and in 2005 APS took a lead role in US participation in the World Year of Physics.

For more information, please click here

Contacts:
James Riordon

301-209-3238

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Discoveries

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Announcements

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic