Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Research in a Vacuum: DARPA Tries to Tap Elusive Casmir Effect for Breakthrough Technology

October 12th, 2009

Research in a Vacuum: DARPA Tries to Tap Elusive Casmir Effect for Breakthrough Technology

Abstract:
Named for a Dutch physicist, the Casimir effect governs interactions of matter with the energy that is present in a vacuum. Success in harnessing this force could someday help researchers develop low-friction ballistics and even levitating objects that defy gravity. For now, the U.S. Defense Department's Defense Advanced Research Projects Agency (DARPA) has launched a two-year, $10-million project encouraging scientists to work on ways to manipulate this quirk of quantum electrodynamics.

Nanoscale design is the most likely place to start and is also the arena where levitation could emerge. Materials scientists working to build tiny machines called microelectromechanical systems (MEMS) struggle with surface interactions, called van der Waals forces, that can make nanomaterials sticky to the point of permanent adhesion, a phenomenon known as "stiction". To defeat stiction, many MEMS devices are coated with Teflon or similar low-friction substances or are studded with tiny springs that keep the surfaces apart. Materials that did not require such fixes could make nanotechnology more reliable. Such materials could skirt another problem posed by adhesion: Because surface stickiness at the nanoscale is much greater than it is for larger objects, MEMS designers resort to making their devices relatively stiff. That reduces adhesion (stiff structures do not readily bend against each other), but it reduces flexibility and increases power demands.

Under certain conditions, manipulating the Casimir effect could create repellant forces between nanoscale surfaces. Hong Tang and his colleagues at Yale School of Engineering & Applied Science sold DARPA on their proposal to assess Casimir forces between miniscule silicon crystals, like those that make up computer chips. "Then we're going to engineer the structure of the surface of the silicon device to get some unusual Casimir forces to produce repulsion," he says. In theory, he adds, that could mean building a device capable of levitation.

Such claims emit a strong scent of fantasy, but researchers say incremental successes could open the door to significant breakthroughs in key areas of nanotechnology, and perhaps larger structures. "What I can contribute is to understand the role of the Casimir force in real working devices, such as microwave switches, MEMS oscillators and gyroscopes, that normally are made of silicon crystals, not perfect metals," Tang says.

Source:
scientificamerican.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Possible Futures

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

MEMS

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

New approach to measuring stickiness could aid micro-device design March 8th, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Military

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant March 16th, 2018

Flat gallium joins roster of new 2-D materials: Rice University, Indian Institute of Science introduce gallenene March 12th, 2018

Aerospace/Space

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

How do very small particles behave at very high temperatures? April 6th, 2018

Deep Space Industries to provide Comet satellite propulsion for BlackSky, LeoStella April 3rd, 2018

Piezomagnetic material changes magnetic properties when stretched March 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project