Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Research in a Vacuum: DARPA Tries to Tap Elusive Casmir Effect for Breakthrough Technology

October 12th, 2009

Research in a Vacuum: DARPA Tries to Tap Elusive Casmir Effect for Breakthrough Technology

Abstract:
Named for a Dutch physicist, the Casimir effect governs interactions of matter with the energy that is present in a vacuum. Success in harnessing this force could someday help researchers develop low-friction ballistics and even levitating objects that defy gravity. For now, the U.S. Defense Department's Defense Advanced Research Projects Agency (DARPA) has launched a two-year, $10-million project encouraging scientists to work on ways to manipulate this quirk of quantum electrodynamics.

Nanoscale design is the most likely place to start and is also the arena where levitation could emerge. Materials scientists working to build tiny machines called microelectromechanical systems (MEMS) struggle with surface interactions, called van der Waals forces, that can make nanomaterials sticky to the point of permanent adhesion, a phenomenon known as "stiction". To defeat stiction, many MEMS devices are coated with Teflon or similar low-friction substances or are studded with tiny springs that keep the surfaces apart. Materials that did not require such fixes could make nanotechnology more reliable. Such materials could skirt another problem posed by adhesion: Because surface stickiness at the nanoscale is much greater than it is for larger objects, MEMS designers resort to making their devices relatively stiff. That reduces adhesion (stiff structures do not readily bend against each other), but it reduces flexibility and increases power demands.

Under certain conditions, manipulating the Casimir effect could create repellant forces between nanoscale surfaces. Hong Tang and his colleagues at Yale School of Engineering & Applied Science sold DARPA on their proposal to assess Casimir forces between miniscule silicon crystals, like those that make up computer chips. "Then we're going to engineer the structure of the surface of the silicon device to get some unusual Casimir forces to produce repulsion," he says. In theory, he adds, that could mean building a device capable of levitation.

Such claims emit a strong scent of fantasy, but researchers say incremental successes could open the door to significant breakthroughs in key areas of nanotechnology, and perhaps larger structures. "What I can contribute is to understand the role of the Casimir force in real working devices, such as microwave switches, MEMS oscillators and gyroscopes, that normally are made of silicon crystals, not perfect metals," Tang says.

Source:
scientificamerican.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Possible Futures

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

MEMS

Engineers shrink microscope to dime-sized device February 17th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Manufacturing platform makes intricate biocompatible micromachines January 7th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Aerospace/Space

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

New method improves accuracy of imaging systems February 8th, 2017

National Space Society's Space Settlement Summit Draws Industry Leaders February 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project