Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti Achieves Groundbreaking Discovery in Using Copper-based Catalysts to Synthesize Silicon Nanowire

Abstract:
Project Demonstrates that Silicon Nanowire Synthesis can be CMOS-Compatible

Leti Achieves Groundbreaking Discovery in Using Copper-based Catalysts to Synthesize Silicon Nanowire

Grenoble, France | Posted on October 7th, 2009

Leti, the leading research and development institute focused on micro- and nano-technologies, announced today that it has broken new ground in the integration of nanotechnology with traditional complementary metal oxide semiconductor (CMOS) chip technology. CMOS is the most widely used technology for manufacturing silicon integrated circuits.

Leti researchers have demonstrated that the synthesis of silicon nanowire can be achieved at temperatures as low as 400 °C by using a copper-based catalyst and an unconventional preparation method. That is much lower than temperatures previously achieved for silicon nanowire synthesis using copper.

This technological breakthrough helps to bridge the gap between CMOS technology and the bottom-up growth of nanowires. It is expected to impact the IC markets by making it possible to add new non-digital functions - such as sensors and advanced photovoltaic architectures - to CMOS chip-making processes.

In a recently published Nature Nanotechnology article, Leti researchers explained that they achieved their breakthrough result by taking an approach transgressing a very well established axiom in nanowire growth. Previously, researchers have assumed that oxidized metals are not suitable for nanowire synthesis, so they usually have tried to remove the oxide. Leti achieved its industry-changing results by oxidizing the copper catalyst and using the high chemical activity of this oxide to reduce synthesis temperature of the nanowires. Leti's research shows that it is possible to grow silicon nanowires with a CMOS-compatible catalyst and at CMOS-compatible temperatures.

Independent thinking culture

"At Leti, we aim to produce knowledge that is usable by industry. This nanowire breakthrough is a beautiful illustration of our mission because the project was bound by industrial constraints from the start," said Leti CEO Laurent Malier. "Leti's unique ability to achieve these results stems from our long-term experience in industrial process development, and our broad range of complementary nano-characterization techniques. Leti's culture, which encourages independent thinking and the freedom to act upon it, was also a key component in this project."

Semiconductor nanowires, which offer a variety of potential uses, have been a subject of basic research for about 10 years. On one hand, in chemistry and biology, the interest is related to nanowires' high surface-to-volume ratio, which makes them well-suited for the electrical detection of chemical or biological substances. Their high surface-to-volume ratio may also be an advantage in solar energy production. Nanowires' small mass, on the other hand, makes them interesting for mechanical mass detection.

All of these potential applications have already been demonstrated by basic research, and technologists are excited about applying them in new devices. One promising idea is to implement new functions such as sensing and energy production on top of integrated circuits. Until now, computing has relied on external power and user input. Nanowire technology has the potential to create computing devices that benefit from both internally generated energy production and direct environmental input.

To view the article in Nature Nanotechnology, visit www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.234.html

####

About CEA-Leti
CEA is a French Research and Technology Organization, with activities in three main areas: Energy, Technologies for Information and Healthcare, and Defence and Security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and Microsystems (MEMS) are at the core of its activities. As a major player in the MINATEC® excellence center, Leti operates 8,000-m˛ state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, Leti puts a strong emphasis on intellectual property and owns more than 1,400 patent families. In 2008, contractual income covered more than 75 percent of its budget, which totalled 205 M€.

For more information, please click here

Contacts:
Clément Moulet, Press Officer
Tel.: +33 4 38 78 03 26

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Possible Futures

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Chip Technology

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Sensors

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Solar/Photovoltaic

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project