Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti Achieves Groundbreaking Discovery in Using Copper-based Catalysts to Synthesize Silicon Nanowire

Abstract:
Project Demonstrates that Silicon Nanowire Synthesis can be CMOS-Compatible

Leti Achieves Groundbreaking Discovery in Using Copper-based Catalysts to Synthesize Silicon Nanowire

Grenoble, France | Posted on October 7th, 2009

Leti, the leading research and development institute focused on micro- and nano-technologies, announced today that it has broken new ground in the integration of nanotechnology with traditional complementary metal oxide semiconductor (CMOS) chip technology. CMOS is the most widely used technology for manufacturing silicon integrated circuits.

Leti researchers have demonstrated that the synthesis of silicon nanowire can be achieved at temperatures as low as 400 °C by using a copper-based catalyst and an unconventional preparation method. That is much lower than temperatures previously achieved for silicon nanowire synthesis using copper.

This technological breakthrough helps to bridge the gap between CMOS technology and the bottom-up growth of nanowires. It is expected to impact the IC markets by making it possible to add new non-digital functions - such as sensors and advanced photovoltaic architectures - to CMOS chip-making processes.

In a recently published Nature Nanotechnology article, Leti researchers explained that they achieved their breakthrough result by taking an approach transgressing a very well established axiom in nanowire growth. Previously, researchers have assumed that oxidized metals are not suitable for nanowire synthesis, so they usually have tried to remove the oxide. Leti achieved its industry-changing results by oxidizing the copper catalyst and using the high chemical activity of this oxide to reduce synthesis temperature of the nanowires. Leti's research shows that it is possible to grow silicon nanowires with a CMOS-compatible catalyst and at CMOS-compatible temperatures.

Independent thinking culture

"At Leti, we aim to produce knowledge that is usable by industry. This nanowire breakthrough is a beautiful illustration of our mission because the project was bound by industrial constraints from the start," said Leti CEO Laurent Malier. "Leti's unique ability to achieve these results stems from our long-term experience in industrial process development, and our broad range of complementary nano-characterization techniques. Leti's culture, which encourages independent thinking and the freedom to act upon it, was also a key component in this project."

Semiconductor nanowires, which offer a variety of potential uses, have been a subject of basic research for about 10 years. On one hand, in chemistry and biology, the interest is related to nanowires' high surface-to-volume ratio, which makes them well-suited for the electrical detection of chemical or biological substances. Their high surface-to-volume ratio may also be an advantage in solar energy production. Nanowires' small mass, on the other hand, makes them interesting for mechanical mass detection.

All of these potential applications have already been demonstrated by basic research, and technologists are excited about applying them in new devices. One promising idea is to implement new functions such as sensing and energy production on top of integrated circuits. Until now, computing has relied on external power and user input. Nanowire technology has the potential to create computing devices that benefit from both internally generated energy production and direct environmental input.

To view the article in Nature Nanotechnology, visit www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.234.html

####

About CEA-Leti
CEA is a French Research and Technology Organization, with activities in three main areas: Energy, Technologies for Information and Healthcare, and Defence and Security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and Microsystems (MEMS) are at the core of its activities. As a major player in the MINATEC® excellence center, Leti operates 8,000-m² state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, Leti puts a strong emphasis on intellectual property and owns more than 1,400 patent families. In 2008, contractual income covered more than 75 percent of its budget, which totalled 205 M€.

For more information, please click here

Contacts:
Clément Moulet, Press Officer
Tel.: +33 4 38 78 03 26

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Possible Futures

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Chip Technology

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Self Assembly

Self-assembling particles brighten future of LED lighting January 18th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Sensors

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Researchers create practical and versatile microscopic optomechanical device: Trapping light and mechanical waves within a tiny bullseye, design could enable more sensitive motion detection January 11th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Solar/Photovoltaic

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project