Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Celebrates 20th Anniversary of Moving Atoms

Abstract:
On this day in 1989, IBM Fellow Don Eigler became the first person in history to move and control an individual atom. Shortly thereafter, on November 11 of that year, Eigler and his team used a custom-built microscope to spell out the letters IBM (NYSE: IBM) with 35 xenon atoms. This unprecedented ability to manipulate individual atoms signaled a quantum leap forward in nanoscience experimentation and heralded in the age of nanotechnology.

IBM Celebrates 20th Anniversary of Moving Atoms

SAN JOSE, CA | Posted on September 28th, 2009

Eigler built his scanning tunneling microscope (STM) in order to visualize and experiment with individual molecules and atoms. As he experimented, he discovered that it was possible to slide individual atoms across a surface using the tip of his STM. To demonstrate both the atomic precision and reproducibility he achieved, he wrote the letters "IBM" with 35 xenon atoms, each positioned with atomic-scale precision.

"Don Eigler's accomplishment remains, to this day, one of the most important breakthroughs in nanoscience and technology," said T.C. Chen, IBM Fellow and vice president, Science & Technology, IBM Research. "At the time, the implications of this achievement were so far-reaching they almost seemed like science fiction. But now, twenty years later, it's clear that this was a defining moment that has spawned the kind of research that will eventually bring us beyond CMOS and Moore's Law, to advance computing to handle the massive volumes of data in the world while using less energy resources."

Understanding the properties, movement and interaction of various materials at the nanoscale is essential for one day building smaller, faster and more energy-efficient processors and memory devices. This understanding could also eventually enable a whole new level of personalized health care and targeted treatments and therapies. Already, the ability to understand and manipulate atoms is leading to new kinds of fabrics, products and more. Ever wonder what makes a raincoat water resistant, or how sunscreen stays put even after swimming? More often than not, it's nanotechnology at work.

Because of Eigler's seminal work, scientists continue making breakthroughs that continue driving the field of nanotechnology, the exploration of building structures and devices out of ultra-tiny components as small as a few atoms or molecules. Such devices might be used as future computer chips, storage devices, biosensors, and things nobody has even imagined.

IBM and nanotechnology

Two IBM scientists in Switzerland won the 1986 Nobel Prize in physics for their early 1980s invention of the STM, kicking off IBM's ongoing leadership in nanoscience and nanotechnology. Since then, IBM researchers have pioneered the use of STMs for positioning atoms into precisely designed structures that reveal fundamental atomic-scale properties and may have potential uses in information storage, transmission and processing.

####

For more information, please click here

Contacts:
Jenny Hunter
IBM

510-919-5320

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the video

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Videos/Movies

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

WiFi capacity doubled at less than half the size: Columbia Engineers develop the first on-chip RF circulator that doubles WiFi speeds with a single antenna -- could transform telecommunications April 18th, 2016

First-ever videos show how heat moves through materials at the nanoscale and speed of sound: Groundbreaking observations could help develop better, more efficient materials for electronics and alternative energy April 16th, 2016

Nanotubes assemble! Rice introduces 'Teslaphoresis' Reconfigured Tesla coil aligns, electrifies materials from a distance April 15th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic