Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Springs built from nanotubes could provide big power storage potential

Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab. 
Photo - Patrick Gillooly
Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab. Photo - Patrick Gillooly

Mechanical engineer Carol Livermore and colleagues find that carbon nanotubes, used as springs, have potential to compete with batteries for energy storage.

Springs built from nanotubes could provide big power storage potential

Cambridge, MA | Posted on September 22nd, 2009

New research by MIT scientists suggests that carbon nanotubes — tube-shaped molecules of pure carbon — could be formed into tiny springs capable of storing as much energy, pound for pound, as state-of-the-art lithium-ion batteries, and potentially more durably and reliably.

Imagine, for example, an emergency backup power supply or alarm system that can be left in place for many years without losing its "charge," portable mechanical tools like leaf blowers that work without the noise and fumes of small gasoline engines, or devices to be sent down oil wells or into other harsh environments where the performance of ordinary batteries would be degraded by temperature extremes. That's the kind of potential that carbon nanotube springs could hold, according to Carol Livermore, associate professor of mechanical engineering. Carbon nanotube springs, she found, can potentially store more than a thousand times more energy for their weight than steel springs.

Two papers describing Livermore and her team's findings on energy storage in carbon nanotube springs have just been published. A paper describing a theoretical analysis of the springs' potential, co-authored by Livermore, graduate student Frances Hill and Timothy Havel SM '07, appeared in June in the journal Nanotechnology. Another paper, by Livermore, Hill, Havel and A. John Hart SM '02, PhD '06, now a professor at the University of Michigan, describing laboratory tests that demonstrate that nanotubes really can exceed the energy storage potential of steel, appears in the September issue of the Journal of Micromechanics and Microengineering.

Theoretical analysis shows the carbon nanotube springs could ultimately have an energy density — a measure of the amount of energy that can be stored in a given weight of material — more than 1,000 times that of steel springs, and comparable to that of the best lithium-ion batteries.

With a snap or a tick-tock

For some applications, springs can have advantages over other ways of storing energy, Livermore explains. Unlike batteries, for example, springs can deliver the stored energy effectively either in a rapid, intense burst, or slowly and steadily over a long period — as exemplified by the difference between the spring in a mousetrap or in a windup clock. Also, unlike batteries, stored energy in springs normally doesn't slowly leak away over time; a mousetrap can remain poised to snap for years without dissipating any of its energy.

For that reason, such systems might lend themselves to applications for emergency backup systems. With batteries, such devices need to be tested frequently to make sure they still have full power, and replace or recharge the batteries when they run down, but with a spring-based system, in principle "you could stick it on the wall and forget it," Livermore says.

Livermore says that the springs made from these minuscule tubes might find their first uses in large devices rather than in micro-electromechanical devices. For one thing, the best uses of such springs may be in cases where the energy is stored mechanically and then used to drive a mechanical load, rather than converting it to electricity first.

Any system that requires conversion from mechanical energy to electrical and back again, using a generator and then a motor, will lose some of its energy in the process through friction and other processes that produce waste heat. For example, a regenerative braking system that stores energy as a bicycle coasts downhill and then releases that energy to boost power while going uphill might be more efficient if it stores and releases its energy from a spring instead of an electrical system, she says. In addition to the direct energy losses, about half the weight of such electromechanical systems currently is in the motor-generator used for the conversion — something that wouldn't be needed in a purely mechanical system.

One reason the microscopic tubes lend themselves to being made into longer fibers that can make effective springs is that the nanotube molecules themselves have a strong tendency to stick to each other. That makes it relatively easy to spin them into long fibers — much as strands of wool can be spun into yarn — and this is something many researchers around the world are working on. "In fact," Livermore says, the fibers are so sticky that "we had some comical moments when you're trying to get them off your tweezers." But that quality means that ultimately it may be possible to "make something that looks like a carbon nanotube and is as long as you want it to be."

Tough and long-lasting

Carbon nanotube springs also have the advantage that they are relatively unaffected by differences in temperature and other environmental factors, whereas batteries need to be optimized for a particular set of conditions, usually to operate at normal room temperature. Nanotube springs might thus find applications in extreme conditions, such as for devices to be used in an oil borehole subjected to high temperature and pressure, or on space vehicles where temperature can fluctuate between extreme heat and extreme cold.

"They should also be able to charge and recharge many times without a loss of performance," Livermore says, although the actual performance over time still needs to be tested.

Livermore says that to create devices that come close to achieving the theoretically possible high energy density of the material will require plenty of additional basic research, followed by engineering work. Among other things, the initial lab tests used fibers of carbon nanotubes joined in parallel, but creating a practical energy storage device will require assembling nanotubes into longer and likely thicker fibers without losing their key advantages.

"These scaled-up springs need to be large (i.e., incorporating many carbon nanotubes), but those individual carbon nanotubes need to work well enough together in the overall assembly of tubes for it to have comparable properties to the individual tubes," Livermore says. "This is not easy to do."

Rod Ruoff, professor of mechanical engineering at the University of Texas, adds that while the theoretical energy density of such systems is high, present ways of making carbon nanotubes are limited in their ability to produce highly concentrated bundles, and so "It appears to me that the 'low hanging fruit' here is to find important applications where the energy density on per weight basis outweighs the energy density on a per volume basis." But, he adds, if Livermore and her team are able to produce denser bundles of carbon nanotubes, "then there are exciting possibilities for mechanical energy storage" with such systems.

The group has already filed for a patent on the technology. Their work has been funded by the Deshpande Center for Technological Innovation Ignition grant and by an MIT Energy Initiative seed grant.


About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Phone: 617-253-2700

Fax: 617-258-8762

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014


Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Columbia engineers make world's smallest FM radio transmitter: Team demonstrates new application of graphene using positive feedback November 18th, 2013

Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated November 15th, 2013

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014


Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Ziptronix and EV Group Demonstrate Submicron Accuracies for Wafer-to-Wafer Hybrid Bonding: Enables Fine-Pitch Connections for 3D Applications, Including Image Sensors, Memory and 3D SoCs May 27th, 2014


SouthWest NanoTechnologies Names NanoSperse as A SWeNT Certified Compounder July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014


University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014


From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014


National Space Society Calls For Less US Dependence On Russian Space Technology July 15th, 2014

Motorized Miniature Screw-Actuator Provides 20 nm Resolution, Based on Piezo Effect July 8th, 2014

NSS Pays Tribute to Space Pioneer Frederick I. Ordway III July 7th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014


New imaging agent provides better picture of the gut July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE