Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Springs built from nanotubes could provide big power storage potential

Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab. 
Photo - Patrick Gillooly
Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab. Photo - Patrick Gillooly

Abstract:
Mechanical engineer Carol Livermore and colleagues find that carbon nanotubes, used as springs, have potential to compete with batteries for energy storage.

Springs built from nanotubes could provide big power storage potential

Cambridge, MA | Posted on September 22nd, 2009

New research by MIT scientists suggests that carbon nanotubes — tube-shaped molecules of pure carbon — could be formed into tiny springs capable of storing as much energy, pound for pound, as state-of-the-art lithium-ion batteries, and potentially more durably and reliably.

Imagine, for example, an emergency backup power supply or alarm system that can be left in place for many years without losing its "charge," portable mechanical tools like leaf blowers that work without the noise and fumes of small gasoline engines, or devices to be sent down oil wells or into other harsh environments where the performance of ordinary batteries would be degraded by temperature extremes. That's the kind of potential that carbon nanotube springs could hold, according to Carol Livermore, associate professor of mechanical engineering. Carbon nanotube springs, she found, can potentially store more than a thousand times more energy for their weight than steel springs.

Two papers describing Livermore and her team's findings on energy storage in carbon nanotube springs have just been published. A paper describing a theoretical analysis of the springs' potential, co-authored by Livermore, graduate student Frances Hill and Timothy Havel SM '07, appeared in June in the journal Nanotechnology. Another paper, by Livermore, Hill, Havel and A. John Hart SM '02, PhD '06, now a professor at the University of Michigan, describing laboratory tests that demonstrate that nanotubes really can exceed the energy storage potential of steel, appears in the September issue of the Journal of Micromechanics and Microengineering.

Theoretical analysis shows the carbon nanotube springs could ultimately have an energy density — a measure of the amount of energy that can be stored in a given weight of material — more than 1,000 times that of steel springs, and comparable to that of the best lithium-ion batteries.

With a snap or a tick-tock

For some applications, springs can have advantages over other ways of storing energy, Livermore explains. Unlike batteries, for example, springs can deliver the stored energy effectively either in a rapid, intense burst, or slowly and steadily over a long period — as exemplified by the difference between the spring in a mousetrap or in a windup clock. Also, unlike batteries, stored energy in springs normally doesn't slowly leak away over time; a mousetrap can remain poised to snap for years without dissipating any of its energy.

For that reason, such systems might lend themselves to applications for emergency backup systems. With batteries, such devices need to be tested frequently to make sure they still have full power, and replace or recharge the batteries when they run down, but with a spring-based system, in principle "you could stick it on the wall and forget it," Livermore says.

Livermore says that the springs made from these minuscule tubes might find their first uses in large devices rather than in micro-electromechanical devices. For one thing, the best uses of such springs may be in cases where the energy is stored mechanically and then used to drive a mechanical load, rather than converting it to electricity first.

Any system that requires conversion from mechanical energy to electrical and back again, using a generator and then a motor, will lose some of its energy in the process through friction and other processes that produce waste heat. For example, a regenerative braking system that stores energy as a bicycle coasts downhill and then releases that energy to boost power while going uphill might be more efficient if it stores and releases its energy from a spring instead of an electrical system, she says. In addition to the direct energy losses, about half the weight of such electromechanical systems currently is in the motor-generator used for the conversion — something that wouldn't be needed in a purely mechanical system.

One reason the microscopic tubes lend themselves to being made into longer fibers that can make effective springs is that the nanotube molecules themselves have a strong tendency to stick to each other. That makes it relatively easy to spin them into long fibers — much as strands of wool can be spun into yarn — and this is something many researchers around the world are working on. "In fact," Livermore says, the fibers are so sticky that "we had some comical moments when you're trying to get them off your tweezers." But that quality means that ultimately it may be possible to "make something that looks like a carbon nanotube and is as long as you want it to be."

Tough and long-lasting

Carbon nanotube springs also have the advantage that they are relatively unaffected by differences in temperature and other environmental factors, whereas batteries need to be optimized for a particular set of conditions, usually to operate at normal room temperature. Nanotube springs might thus find applications in extreme conditions, such as for devices to be used in an oil borehole subjected to high temperature and pressure, or on space vehicles where temperature can fluctuate between extreme heat and extreme cold.

"They should also be able to charge and recharge many times without a loss of performance," Livermore says, although the actual performance over time still needs to be tested.

Livermore says that to create devices that come close to achieving the theoretically possible high energy density of the material will require plenty of additional basic research, followed by engineering work. Among other things, the initial lab tests used fibers of carbon nanotubes joined in parallel, but creating a practical energy storage device will require assembling nanotubes into longer and likely thicker fibers without losing their key advantages.

"These scaled-up springs need to be large (i.e., incorporating many carbon nanotubes), but those individual carbon nanotubes need to work well enough together in the overall assembly of tubes for it to have comparable properties to the individual tubes," Livermore says. "This is not easy to do."

Rod Ruoff, professor of mechanical engineering at the University of Texas, adds that while the theoretical energy density of such systems is high, present ways of making carbon nanotubes are limited in their ability to produce highly concentrated bundles, and so "It appears to me that the 'low hanging fruit' here is to find important applications where the energy density on per weight basis outweighs the energy density on a per volume basis." But, he adds, if Livermore and her team are able to produce denser bundles of carbon nanotubes, "then there are exciting possibilities for mechanical energy storage" with such systems.

The group has already filed for a patent on the technology. Their work has been funded by the Deshpande Center for Technological Innovation Ignition grant and by an MIT Energy Initiative seed grant.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Phone: 617-253-2700

Fax: 617-258-8762

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

NEMS

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Possible Futures

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

MEMS

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Announcements

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Aerospace/Space

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

SpaceX Founding Employee Tom Mueller to Speak at International Space Development Conference May 15th, 2018

Shrimp, Soybeans, and Tomatoes Top the Menu in Cities in Space May 10th, 2018

National Space Society Applauds NASA's Support for Commercial Low Earth Orbit Space Stations May 2nd, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

BNAs improve performance of Li-ion batteries June 27th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Future electronic components to be printed like newspapers July 20th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project