Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Springs built from nanotubes could provide big power storage potential

Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab. 
Photo - Patrick Gillooly
Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab. Photo - Patrick Gillooly

Abstract:
Mechanical engineer Carol Livermore and colleagues find that carbon nanotubes, used as springs, have potential to compete with batteries for energy storage.

Springs built from nanotubes could provide big power storage potential

Cambridge, MA | Posted on September 22nd, 2009

New research by MIT scientists suggests that carbon nanotubes — tube-shaped molecules of pure carbon — could be formed into tiny springs capable of storing as much energy, pound for pound, as state-of-the-art lithium-ion batteries, and potentially more durably and reliably.

Imagine, for example, an emergency backup power supply or alarm system that can be left in place for many years without losing its "charge," portable mechanical tools like leaf blowers that work without the noise and fumes of small gasoline engines, or devices to be sent down oil wells or into other harsh environments where the performance of ordinary batteries would be degraded by temperature extremes. That's the kind of potential that carbon nanotube springs could hold, according to Carol Livermore, associate professor of mechanical engineering. Carbon nanotube springs, she found, can potentially store more than a thousand times more energy for their weight than steel springs.

Two papers describing Livermore and her team's findings on energy storage in carbon nanotube springs have just been published. A paper describing a theoretical analysis of the springs' potential, co-authored by Livermore, graduate student Frances Hill and Timothy Havel SM '07, appeared in June in the journal Nanotechnology. Another paper, by Livermore, Hill, Havel and A. John Hart SM '02, PhD '06, now a professor at the University of Michigan, describing laboratory tests that demonstrate that nanotubes really can exceed the energy storage potential of steel, appears in the September issue of the Journal of Micromechanics and Microengineering.

Theoretical analysis shows the carbon nanotube springs could ultimately have an energy density — a measure of the amount of energy that can be stored in a given weight of material — more than 1,000 times that of steel springs, and comparable to that of the best lithium-ion batteries.

With a snap or a tick-tock

For some applications, springs can have advantages over other ways of storing energy, Livermore explains. Unlike batteries, for example, springs can deliver the stored energy effectively either in a rapid, intense burst, or slowly and steadily over a long period — as exemplified by the difference between the spring in a mousetrap or in a windup clock. Also, unlike batteries, stored energy in springs normally doesn't slowly leak away over time; a mousetrap can remain poised to snap for years without dissipating any of its energy.

For that reason, such systems might lend themselves to applications for emergency backup systems. With batteries, such devices need to be tested frequently to make sure they still have full power, and replace or recharge the batteries when they run down, but with a spring-based system, in principle "you could stick it on the wall and forget it," Livermore says.

Livermore says that the springs made from these minuscule tubes might find their first uses in large devices rather than in micro-electromechanical devices. For one thing, the best uses of such springs may be in cases where the energy is stored mechanically and then used to drive a mechanical load, rather than converting it to electricity first.

Any system that requires conversion from mechanical energy to electrical and back again, using a generator and then a motor, will lose some of its energy in the process through friction and other processes that produce waste heat. For example, a regenerative braking system that stores energy as a bicycle coasts downhill and then releases that energy to boost power while going uphill might be more efficient if it stores and releases its energy from a spring instead of an electrical system, she says. In addition to the direct energy losses, about half the weight of such electromechanical systems currently is in the motor-generator used for the conversion — something that wouldn't be needed in a purely mechanical system.

One reason the microscopic tubes lend themselves to being made into longer fibers that can make effective springs is that the nanotube molecules themselves have a strong tendency to stick to each other. That makes it relatively easy to spin them into long fibers — much as strands of wool can be spun into yarn — and this is something many researchers around the world are working on. "In fact," Livermore says, the fibers are so sticky that "we had some comical moments when you're trying to get them off your tweezers." But that quality means that ultimately it may be possible to "make something that looks like a carbon nanotube and is as long as you want it to be."

Tough and long-lasting

Carbon nanotube springs also have the advantage that they are relatively unaffected by differences in temperature and other environmental factors, whereas batteries need to be optimized for a particular set of conditions, usually to operate at normal room temperature. Nanotube springs might thus find applications in extreme conditions, such as for devices to be used in an oil borehole subjected to high temperature and pressure, or on space vehicles where temperature can fluctuate between extreme heat and extreme cold.

"They should also be able to charge and recharge many times without a loss of performance," Livermore says, although the actual performance over time still needs to be tested.

Livermore says that to create devices that come close to achieving the theoretically possible high energy density of the material will require plenty of additional basic research, followed by engineering work. Among other things, the initial lab tests used fibers of carbon nanotubes joined in parallel, but creating a practical energy storage device will require assembling nanotubes into longer and likely thicker fibers without losing their key advantages.

"These scaled-up springs need to be large (i.e., incorporating many carbon nanotubes), but those individual carbon nanotubes need to work well enough together in the overall assembly of tubes for it to have comparable properties to the individual tubes," Livermore says. "This is not easy to do."

Rod Ruoff, professor of mechanical engineering at the University of Texas, adds that while the theoretical energy density of such systems is high, present ways of making carbon nanotubes are limited in their ability to produce highly concentrated bundles, and so "It appears to me that the 'low hanging fruit' here is to find important applications where the energy density on per weight basis outweighs the energy density on a per volume basis." But, he adds, if Livermore and her team are able to produce denser bundles of carbon nanotubes, "then there are exciting possibilities for mechanical energy storage" with such systems.

The group has already filed for a patent on the technology. Their work has been funded by the Deshpande Center for Technological Innovation Ignition grant and by an MIT Energy Initiative seed grant.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Phone: 617-253-2700

Fax: 617-258-8762

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

NEMS

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Nanodevices at one-hundredth the cost: New techniques for building microelectromechanical systems show promise December 20th, 2015

Nano-mechanical study offers new assessment of silicon for next-gen batteries September 25th, 2015

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

MEMS

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

SITRI and Accelink Announce Cooperative Agreement on Opto-Electronic Communication December 31st, 2015

Nanodevices at one-hundredth the cost: New techniques for building microelectromechanical systems show promise December 20th, 2015

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Announcements

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Energy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Aerospace/Space

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Graphene composite may keep wings ice-free: Rice University develops conductive material to heat surfaces, simplify ice removal January 25th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic