Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Springs built from nanotubes could provide big power storage potential

Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab. 
Photo - Patrick Gillooly
Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab. Photo - Patrick Gillooly

Abstract:
Mechanical engineer Carol Livermore and colleagues find that carbon nanotubes, used as springs, have potential to compete with batteries for energy storage.

Springs built from nanotubes could provide big power storage potential

Cambridge, MA | Posted on September 22nd, 2009

New research by MIT scientists suggests that carbon nanotubes — tube-shaped molecules of pure carbon — could be formed into tiny springs capable of storing as much energy, pound for pound, as state-of-the-art lithium-ion batteries, and potentially more durably and reliably.

Imagine, for example, an emergency backup power supply or alarm system that can be left in place for many years without losing its "charge," portable mechanical tools like leaf blowers that work without the noise and fumes of small gasoline engines, or devices to be sent down oil wells or into other harsh environments where the performance of ordinary batteries would be degraded by temperature extremes. That's the kind of potential that carbon nanotube springs could hold, according to Carol Livermore, associate professor of mechanical engineering. Carbon nanotube springs, she found, can potentially store more than a thousand times more energy for their weight than steel springs.

Two papers describing Livermore and her team's findings on energy storage in carbon nanotube springs have just been published. A paper describing a theoretical analysis of the springs' potential, co-authored by Livermore, graduate student Frances Hill and Timothy Havel SM '07, appeared in June in the journal Nanotechnology. Another paper, by Livermore, Hill, Havel and A. John Hart SM '02, PhD '06, now a professor at the University of Michigan, describing laboratory tests that demonstrate that nanotubes really can exceed the energy storage potential of steel, appears in the September issue of the Journal of Micromechanics and Microengineering.

Theoretical analysis shows the carbon nanotube springs could ultimately have an energy density — a measure of the amount of energy that can be stored in a given weight of material — more than 1,000 times that of steel springs, and comparable to that of the best lithium-ion batteries.

With a snap or a tick-tock

For some applications, springs can have advantages over other ways of storing energy, Livermore explains. Unlike batteries, for example, springs can deliver the stored energy effectively either in a rapid, intense burst, or slowly and steadily over a long period — as exemplified by the difference between the spring in a mousetrap or in a windup clock. Also, unlike batteries, stored energy in springs normally doesn't slowly leak away over time; a mousetrap can remain poised to snap for years without dissipating any of its energy.

For that reason, such systems might lend themselves to applications for emergency backup systems. With batteries, such devices need to be tested frequently to make sure they still have full power, and replace or recharge the batteries when they run down, but with a spring-based system, in principle "you could stick it on the wall and forget it," Livermore says.

Livermore says that the springs made from these minuscule tubes might find their first uses in large devices rather than in micro-electromechanical devices. For one thing, the best uses of such springs may be in cases where the energy is stored mechanically and then used to drive a mechanical load, rather than converting it to electricity first.

Any system that requires conversion from mechanical energy to electrical and back again, using a generator and then a motor, will lose some of its energy in the process through friction and other processes that produce waste heat. For example, a regenerative braking system that stores energy as a bicycle coasts downhill and then releases that energy to boost power while going uphill might be more efficient if it stores and releases its energy from a spring instead of an electrical system, she says. In addition to the direct energy losses, about half the weight of such electromechanical systems currently is in the motor-generator used for the conversion — something that wouldn't be needed in a purely mechanical system.

One reason the microscopic tubes lend themselves to being made into longer fibers that can make effective springs is that the nanotube molecules themselves have a strong tendency to stick to each other. That makes it relatively easy to spin them into long fibers — much as strands of wool can be spun into yarn — and this is something many researchers around the world are working on. "In fact," Livermore says, the fibers are so sticky that "we had some comical moments when you're trying to get them off your tweezers." But that quality means that ultimately it may be possible to "make something that looks like a carbon nanotube and is as long as you want it to be."

Tough and long-lasting

Carbon nanotube springs also have the advantage that they are relatively unaffected by differences in temperature and other environmental factors, whereas batteries need to be optimized for a particular set of conditions, usually to operate at normal room temperature. Nanotube springs might thus find applications in extreme conditions, such as for devices to be used in an oil borehole subjected to high temperature and pressure, or on space vehicles where temperature can fluctuate between extreme heat and extreme cold.

"They should also be able to charge and recharge many times without a loss of performance," Livermore says, although the actual performance over time still needs to be tested.

Livermore says that to create devices that come close to achieving the theoretically possible high energy density of the material will require plenty of additional basic research, followed by engineering work. Among other things, the initial lab tests used fibers of carbon nanotubes joined in parallel, but creating a practical energy storage device will require assembling nanotubes into longer and likely thicker fibers without losing their key advantages.

"These scaled-up springs need to be large (i.e., incorporating many carbon nanotubes), but those individual carbon nanotubes need to work well enough together in the overall assembly of tubes for it to have comparable properties to the individual tubes," Livermore says. "This is not easy to do."

Rod Ruoff, professor of mechanical engineering at the University of Texas, adds that while the theoretical energy density of such systems is high, present ways of making carbon nanotubes are limited in their ability to produce highly concentrated bundles, and so "It appears to me that the 'low hanging fruit' here is to find important applications where the energy density on per weight basis outweighs the energy density on a per volume basis." But, he adds, if Livermore and her team are able to produce denser bundles of carbon nanotubes, "then there are exciting possibilities for mechanical energy storage" with such systems.

The group has already filed for a patent on the technology. Their work has been funded by the Deshpande Center for Technological Innovation Ignition grant and by an MIT Energy Initiative seed grant.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Phone: 617-253-2700

Fax: 617-258-8762

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

NEMS

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project