Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Simultaneous Nanoscale Imaging of Surface and Bulk Atoms

Uranium single atoms (circled) and small crystallites on a carbon support imaged simultaneously using a scanning probe to produce forward scattering through the sample (top) and backward scattering emerging from the surface (bottom). Center panel shows superimposition of the two in red (bulk) and green (surface). Atoms not seen in the lower image are on the bottom surface of the support.
Uranium single atoms (circled) and small crystallites on a carbon support imaged simultaneously using a scanning probe to produce forward scattering through the sample (top) and backward scattering emerging from the surface (bottom). Center panel shows superimposition of the two in red (bulk) and green (surface). Atoms not seen in the lower image are on the bottom surface of the support.

Abstract:
New microscope could revolutionize imaging, improve catalysts for energy applications

Simultaneous Nanoscale Imaging of Surface and Bulk Atoms

Upton, NY | Posted on September 21st, 2009

Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, in collaboration with researchers from Hitachi High Technologies Corp., have demonstrated a new scanning electron microscope capable of selectively imaging single atoms on the top surface of a specimen while a second, simultaneous imaging signal shows atoms throughout the sample's depth. This new tool, located at Brookhaven Lab's Center for Functional Nanomaterials (CFN), will greatly expand scientists' ability to understand and ultimately control chemical reactions, such as those of catalysts in energy-conversion devices.

A paper describing the work will be published online September 20, 2009, in Nature Materials, along with a commentary article highlighting the development.

"Our knowledge of the role of individual atoms in nanotechnology and energy-related research is strongly influenced by our ability to visualize them, not only in bulk but also on the surface, which is where the interactions of chemical reactions take place," said Brookhaven physicist Yimei Zhu, lead author on the paper. "This new microscope and the method we developed allow us, for the first time, to directly look at atoms on the top surface and in the bulk of a sample simultaneously to reveal their atomic arrangement and bonding states. This information will help us identify the active sites and functions of materials at nanoscale dimensions for a wide range of applications, such as converting waste heat or chemical energy to electricity."

Like all scanning electron microscopes, the new tool probes a sample with an electron beam focused to a tiny spot and detects so-called secondary electrons emitted by the sample to reveal its surface structure and topography. Though this technique has been a workhorse of surface imaging in industrial and academic laboratories for decades, its resolution has left much to be desired because of imperfect focusing due to lens aberrations.

Using a newly developed spherical aberration corrector, the new tool corrects these distortions to create a smaller probe with significantly increased brightness.

"The effect is similar to using a larger aperture lens on a camera," said biophysicst Joseph Wall, a longtime expert in electron microscopy at Brookhaven Lab and a co-author on the paper. "It allows you to gather information from a larger angle and focus on a smaller spot."

The new device also employs specialized electron optics to channel the emitted secondary electrons to the detector. The result is a fourfold improvement in resolution to below one tenth of a nanometer and thus, the ability to image single atoms.

Additional detectors, located below the sample, detect electrons transmitted through the sample, revealing details about the entire structure at the exact instant the "shutter" snapped to record each pixel of the surface image. This simultaneous imaging allows the scientists to correlate information in the two images to understand precisely what is happening on the surface and throughout the sample at the same time.

"Having information about the surface structure and the bulk sample at the same time will allow researchers to better determine how the surface and bulk atoms work together, for example in a catalytic reaction," said Zhu. The improved resolution and combined imaging capabilities will also reveal features such as small variations in composition or the locations of impurities that could have large effects on function.

"An essential component of this study was selection of a test specimen, isolated uranium atoms on a thin carbon substrate, where the images could be interpreted quantitatively to rule out other possible interpretations," Wall commented.

Because of its extreme sensitivity, the new microscope must be kept isolated from a range of environmental effects such as variations in temperature, mechanical vibrations, and electromagnetic fields. Even the slightest waft of air could cause distortions in the images.

Fortunately the CFN was built with these needs in mind. Temperatures are regulated to within three-hundredths of a degree Fahrenheit over a 24-hour period; shock-absorber-like slabs isolate the room from the rumble of passing trucks and distant slamming doors; layers of heavy doors keep even subtle vibrations out; and air-cooling panels replace typical ceiling vents to eliminate airflow.

"The building is really a mechanical-engineering masterpiece," said Zhu. "This microscope wouldn't work at all without these sophisticated systems." Development of the microscope was funded by the Office of Basic Energy Sciences within the DOE Office of Science.

The Center for Functional Nanomaterials at Brookhaven National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit DOE's nanoscience website at www.science.doe.gov/news_information/news_room/2006/nano/index.htm

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

Mona S. Rowe
(631) 344-5056

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Chemistry

Graphene decharging and molecular shielding February 8th, 2016

Announcements

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Tools

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

Energy

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

Technical partnership at the top Oxford Instruments and Zurich Instruments announce a technical collaboration for low temperature physics January 7th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic