Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > KLA-Tencor’s New Teron™ 600 Reticle Defect Inspection Platform Addresses Mask Design Discontinuities at the 2Xnm Node

Today KLA-Tencor Corporation (NASDAQ: KLAC), the world's leading supplier of process control and yield management solutions for the semiconductor and related industries, introduced the Teron 600 Series reticle (mask) defect inspection systems. Addressing a major transition in mask design at the 2Xnm logic (3Xnm half-pitch memory) node, the new Teron 600 platform will introduce programmable scanner-illumination capability and offer significant improvements in sensitivity and computational lithography power over the current industry-standard platform, TeraScan™XR. These advances are necessary to enable development and manufacturing of the innovative reticles that distinguish the 2Xnm node.

KLA-Tencor’s New Teron™ 600 Reticle Defect Inspection Platform Addresses Mask Design Discontinuities at the 2Xnm Node

Milpitas, CA | Posted on September 15th, 2009

Traditionally mask designers have started with a mask pattern that looks like the target wafer pattern, making small adjustments to the mask features (optical proximity corrections or OPC) until the desired wafer structures are achieved. This approach begins to break down at the 2Xnm node, as a consequence of extending 193nm lithography into an extreme sub-wavelength regime. Thus, at the 2Xnm node, computational lithography techniques such as Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO) become viable. ILT typically generates a complex mask pattern with an enormous number of very small features, making the mask difficult to manufacture. To complicate matters even further, Source Mask Optimization (SMO) involves calculating a non-uniform intensity profile for the scanner source. That profile is designed to work together with the ILT mask to deliver the optimum lithographic results on the wafer.

"The dramatic change in reticle strategy for the 2Xnm device generation has created a discontinuity in reticle defect inspection," remarked Brian Haas, vice president and general manager of the Reticle and Photomask Inspection Division at KLA-Tencor. "The reticle features are much smaller than you would predict from a 3Xnm to 2Xnm shrink. In addition, the mask pattern is so fractured that it is no longer feasible for an engineer to look at the location of a reticle defect and decide whether it is likely to print on the wafer—and potentially cause a catastrophic yield loss in the fab. For the 2Xnm node, we must be able to input a custom scanner illumination profile, take into account polarization effects and the photoresist, and rigorously calculate the impact of the reticle defect on the wafer. The Teron 600 leverages KLA-Tencor's strength in computational lithography and our experience from developing and manufacturing six generations of reticle inspection platforms. As a result it is an extremely high-resolution, low-noise reticle inspection system, equipped for the new 2Xnm challenges. It's a big achievement for KLA-Tencor which we believe will be tremendously enabling for our customers and the industry."

The Teron 600 platform has also been designed for flexibility and extendibility. The system has successfully inspected prototype reticles created for ILT / SMO, double-patterning lithography (DPL), and EUV (masks and blanks). The system is engineered to be extendible to potential 1Xnm optical solutions. Moreover, the Teron 600 Series can work with KLA-Tencor's TeraScan 500 Series reticle defect inspection systems in a mix-and-match strategy, to provide a cost-effective solution for manufacturing photomask sets that include both critical and non-critical layers.

The new Teron 600 Series reticle defect inspection systems will include several features designed to enable production of advanced optical masks and development of EUV masks, including:

* New 193nm wavelength, smaller pixel, improved image processing and ultra-low noise operation to provide high-resolution reticle plane inspection (RPI);
*Die-to-database and die-to-die operating modes, enabling defect capture throughout the die and on a broad range of reticle layouts;
* Wafer-plane inspection (WPI) for prediction of reticle defect printability, complete with photoresist thresholding and modeling of sub-wavelength diffraction and polarization effects;
* New user-configurable scanner illumination model, enabling prediction of reticle defect printability when SMO, ILT or other non-standard scanner illumination geometry is implemented;
* Aerial-plane filtering of nuisance defects, facilitating early process development and faster cycle time during mask production; and
* Compatibility between Teron and TeraScan platforms, for capacity optimization and effective integration of data from critical and non-critical layers.

For more information on how the Teron 600 Series reticle defect inspection systems enable photomask manufacturers to produce and ship masks free from printable defects at the 2Xnm node, please visit the product web page at:

Forward Looking Statements:
Statements in this press release other than historical facts, such as statements regarding the anticipated technology shifts to smaller critical dimensions on chips, including market adoption of such shifts and the challenges associated with such smaller dimensions; the expected use of advanced lithography techniques such as SMO, ILT, EUV and DPL; Teron's ability to handle challenges related to these anticipated shifts; the tool's extendibility to 1Xnm nodes; and Teron's expected performance (including its defect capture capabilities and the benefits that may be realized by our customers through the use of the Teron Series), are forward-looking statements, and are subject to the Safe Harbor provisions created by the Private Securities Litigation Reform Act of 1995. These forward-looking statements are based on current information and expectations, and involve a number of risks and uncertainties. Actual results may differ materially from those projected in such statements due to various factors, including delays in the adoption of new technologies (whether due to cost or performance issues or otherwise) or unanticipated technological challenges or limitations that affect the implementation or use of our products.


About KLA-Tencor
KLA-Tencor Corporation (NASDAQ: KLAC), a leading provider of process control and yield management solutions, partners with customers around the world to develop state-of-the-art inspection and metrology technologies. These technologies serve the semiconductor, data storage, compound semiconductor, photovoltaic, and other related nanoelectronics industries. With a portfolio of industry-standard products and a team of world-class engineers and scientists, the company has created superior solutions for its customers for over 30 years. Headquartered in Milpitas, California, KLA-Tencor has dedicated customer operations and service centers around the world. Additional information may be found at (KLAC-P)

For more information, please click here

Investor Relations:
Ed Lockwood
Sr. Director, Investor Relations
(408) 875-9529

Media Relations:
Meggan Powers
Sr. Director, Corporate Communications
(408) 875-8733

Copyright © KLA-Tencor

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014


Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014


'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014


Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE