Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > KLA-Tencor’s New Teron™ 600 Reticle Defect Inspection Platform Addresses Mask Design Discontinuities at the 2Xnm Node

Abstract:
Today KLA-Tencor Corporation (NASDAQ: KLAC), the world's leading supplier of process control and yield management solutions for the semiconductor and related industries, introduced the Teron 600 Series reticle (mask) defect inspection systems. Addressing a major transition in mask design at the 2Xnm logic (3Xnm half-pitch memory) node, the new Teron 600 platform will introduce programmable scanner-illumination capability and offer significant improvements in sensitivity and computational lithography power over the current industry-standard platform, TeraScan™XR. These advances are necessary to enable development and manufacturing of the innovative reticles that distinguish the 2Xnm node.

KLA-Tencor’s New Teron™ 600 Reticle Defect Inspection Platform Addresses Mask Design Discontinuities at the 2Xnm Node

Milpitas, CA | Posted on September 15th, 2009

Traditionally mask designers have started with a mask pattern that looks like the target wafer pattern, making small adjustments to the mask features (optical proximity corrections or OPC) until the desired wafer structures are achieved. This approach begins to break down at the 2Xnm node, as a consequence of extending 193nm lithography into an extreme sub-wavelength regime. Thus, at the 2Xnm node, computational lithography techniques such as Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO) become viable. ILT typically generates a complex mask pattern with an enormous number of very small features, making the mask difficult to manufacture. To complicate matters even further, Source Mask Optimization (SMO) involves calculating a non-uniform intensity profile for the scanner source. That profile is designed to work together with the ILT mask to deliver the optimum lithographic results on the wafer.

"The dramatic change in reticle strategy for the 2Xnm device generation has created a discontinuity in reticle defect inspection," remarked Brian Haas, vice president and general manager of the Reticle and Photomask Inspection Division at KLA-Tencor. "The reticle features are much smaller than you would predict from a 3Xnm to 2Xnm shrink. In addition, the mask pattern is so fractured that it is no longer feasible for an engineer to look at the location of a reticle defect and decide whether it is likely to print on the wafer—and potentially cause a catastrophic yield loss in the fab. For the 2Xnm node, we must be able to input a custom scanner illumination profile, take into account polarization effects and the photoresist, and rigorously calculate the impact of the reticle defect on the wafer. The Teron 600 leverages KLA-Tencor's strength in computational lithography and our experience from developing and manufacturing six generations of reticle inspection platforms. As a result it is an extremely high-resolution, low-noise reticle inspection system, equipped for the new 2Xnm challenges. It's a big achievement for KLA-Tencor which we believe will be tremendously enabling for our customers and the industry."

The Teron 600 platform has also been designed for flexibility and extendibility. The system has successfully inspected prototype reticles created for ILT / SMO, double-patterning lithography (DPL), and EUV (masks and blanks). The system is engineered to be extendible to potential 1Xnm optical solutions. Moreover, the Teron 600 Series can work with KLA-Tencor's TeraScan 500 Series reticle defect inspection systems in a mix-and-match strategy, to provide a cost-effective solution for manufacturing photomask sets that include both critical and non-critical layers.

The new Teron 600 Series reticle defect inspection systems will include several features designed to enable production of advanced optical masks and development of EUV masks, including:

* New 193nm wavelength, smaller pixel, improved image processing and ultra-low noise operation to provide high-resolution reticle plane inspection (RPI);
*Die-to-database and die-to-die operating modes, enabling defect capture throughout the die and on a broad range of reticle layouts;
* Wafer-plane inspection (WPI) for prediction of reticle defect printability, complete with photoresist thresholding and modeling of sub-wavelength diffraction and polarization effects;
* New user-configurable scanner illumination model, enabling prediction of reticle defect printability when SMO, ILT or other non-standard scanner illumination geometry is implemented;
* Aerial-plane filtering of nuisance defects, facilitating early process development and faster cycle time during mask production; and
* Compatibility between Teron and TeraScan platforms, for capacity optimization and effective integration of data from critical and non-critical layers.

For more information on how the Teron 600 Series reticle defect inspection systems enable photomask manufacturers to produce and ship masks free from printable defects at the 2Xnm node, please visit the product web page at: www.kla-tencor.com/reticle/teron-600.html.

Forward Looking Statements:
Statements in this press release other than historical facts, such as statements regarding the anticipated technology shifts to smaller critical dimensions on chips, including market adoption of such shifts and the challenges associated with such smaller dimensions; the expected use of advanced lithography techniques such as SMO, ILT, EUV and DPL; Teron's ability to handle challenges related to these anticipated shifts; the tool's extendibility to 1Xnm nodes; and Teron's expected performance (including its defect capture capabilities and the benefits that may be realized by our customers through the use of the Teron Series), are forward-looking statements, and are subject to the Safe Harbor provisions created by the Private Securities Litigation Reform Act of 1995. These forward-looking statements are based on current information and expectations, and involve a number of risks and uncertainties. Actual results may differ materially from those projected in such statements due to various factors, including delays in the adoption of new technologies (whether due to cost or performance issues or otherwise) or unanticipated technological challenges or limitations that affect the implementation or use of our products.

####

About KLA-Tencor
KLA-Tencor Corporation (NASDAQ: KLAC), a leading provider of process control and yield management solutions, partners with customers around the world to develop state-of-the-art inspection and metrology technologies. These technologies serve the semiconductor, data storage, compound semiconductor, photovoltaic, and other related nanoelectronics industries. With a portfolio of industry-standard products and a team of world-class engineers and scientists, the company has created superior solutions for its customers for over 30 years. Headquartered in Milpitas, California, KLA-Tencor has dedicated customer operations and service centers around the world. Additional information may be found at www.kla-tencor.com. (KLAC-P)

For more information, please click here

Contacts:
Investor Relations:
Ed Lockwood
Sr. Director, Investor Relations
(408) 875-9529


Media Relations:
Meggan Powers
Sr. Director, Corporate Communications
(408) 875-8733

Copyright © KLA-Tencor

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Chip Technology

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Nanoelectronics

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Tools

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE