Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > £6m funding boost for super-fast computers

Professor Anatoly Zayats from the School of Maths and Physics at Queen's University Belfast
Professor Anatoly Zayats from the School of Maths and Physics at Queen's University Belfast

Abstract:
Computers which use light to process large amounts of data faster than ever before are just one of many groundbreaking potential applications of a new £6 million research programme at Queen's and Imperial College London, launched today, 1 September 2009.

£6m funding boost for super-fast computers

Northern Ireland, UK | Posted on September 1st, 2009

The Engineering and Physical Sciences Research Council (EPSRC) is funding the two universities to establish a world-leading research programme on the fundamental science of so-called ‘nanoplasmonic devices'.

Nanoplasmonic devices' key components are tiny nanoscale metal structures - more then 100 times smaller than the width of a human hair - that guide and direct light.

The structures have been tailor-made to interact with light in an unusual and highly controlled way. This means they could one day be used to build new kinds of super-high-speed ‘optical computers' - so named because they would process information using light signals, instead of the electric currents used by today's computers.

At present, the speed with which computers process information is limited by the time it takes for the information to be transferred between electronic components. Currently this information is transferred using nanoscale metallic wires that transmit the signals as an electric current.

To speed up the process, the scientists at Queen's and Imperial hope to develop a way of sending the signals along the same wires in the form of light.

In order to achieve this, they are developing a raft of new metallic devices including tiny nanoscale sources of light, nanoscale ‘waveguides', to guide light along a desired route, and nanoscale detectors to pick up the light signals.

Similar approaches may also help in the development of devices for faster internet services.

Professor Anatoly Zayats, from the Queen's University's Centre for Nanostructured Media, who leads the project said: "This is basic research into how light interacts with matter on the nanoscale. But we will work together with and listen to our industrial partners to direct research in the direction that hopefully will lead to new improved products and services that everyone can buy from the shelf."

Professor Stefan Maier, who leads the research team at Imperial, added: "This is an exciting step towards developing computers that use light waves, not electrical current, to handle data and process information. In the future these optical computers will provide us with more processing power and higher speed. This will also open the door to a world of possibilities in scientific fields at the interface with the biosciences, and perhaps even in the world of personal computing."

The project is also supported by INTEL, Seagate, Ericsson, Oxonica, IMEC and the National Physics Laboratory.

####

About Queen’s University Belfast
"Queen's is a broadly-based, research-driven university with a dynamic world-class research and education portfolio and strong international connections. The University promotes the widest possible access to this portfolio of excellence in an environment of equality, tolerance and mutual respect, and it fully embraces its leadership role in Northern Ireland and beyond." (approved by Senate, 30 November 2004)

For more information, please click here

Contacts:
Lisa McElroy, Queen’s University Belfast press office
Tel: (028) 9097 5384 M: 0781 44 22 572


Laura Gallagher, Imperial College London press office, Tel: +44 (0)20 75948432
Out-of-hours duty press office:
+44 (0)7803 886248

Copyright © Queen’s University Belfast

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Chip Technology

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic