Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > £6m funding boost for super-fast computers

Professor Anatoly Zayats from the School of Maths and Physics at Queen's University Belfast
Professor Anatoly Zayats from the School of Maths and Physics at Queen's University Belfast

Abstract:
Computers which use light to process large amounts of data faster than ever before are just one of many groundbreaking potential applications of a new £6 million research programme at Queen's and Imperial College London, launched today, 1 September 2009.

£6m funding boost for super-fast computers

Northern Ireland, UK | Posted on September 1st, 2009

The Engineering and Physical Sciences Research Council (EPSRC) is funding the two universities to establish a world-leading research programme on the fundamental science of so-called ‘nanoplasmonic devices'.

Nanoplasmonic devices' key components are tiny nanoscale metal structures - more then 100 times smaller than the width of a human hair - that guide and direct light.

The structures have been tailor-made to interact with light in an unusual and highly controlled way. This means they could one day be used to build new kinds of super-high-speed ‘optical computers' - so named because they would process information using light signals, instead of the electric currents used by today's computers.

At present, the speed with which computers process information is limited by the time it takes for the information to be transferred between electronic components. Currently this information is transferred using nanoscale metallic wires that transmit the signals as an electric current.

To speed up the process, the scientists at Queen's and Imperial hope to develop a way of sending the signals along the same wires in the form of light.

In order to achieve this, they are developing a raft of new metallic devices including tiny nanoscale sources of light, nanoscale ‘waveguides', to guide light along a desired route, and nanoscale detectors to pick up the light signals.

Similar approaches may also help in the development of devices for faster internet services.

Professor Anatoly Zayats, from the Queen's University's Centre for Nanostructured Media, who leads the project said: "This is basic research into how light interacts with matter on the nanoscale. But we will work together with and listen to our industrial partners to direct research in the direction that hopefully will lead to new improved products and services that everyone can buy from the shelf."

Professor Stefan Maier, who leads the research team at Imperial, added: "This is an exciting step towards developing computers that use light waves, not electrical current, to handle data and process information. In the future these optical computers will provide us with more processing power and higher speed. This will also open the door to a world of possibilities in scientific fields at the interface with the biosciences, and perhaps even in the world of personal computing."

The project is also supported by INTEL, Seagate, Ericsson, Oxonica, IMEC and the National Physics Laboratory.

####

About Queen’s University Belfast
"Queen's is a broadly-based, research-driven university with a dynamic world-class research and education portfolio and strong international connections. The University promotes the widest possible access to this portfolio of excellence in an environment of equality, tolerance and mutual respect, and it fully embraces its leadership role in Northern Ireland and beyond." (approved by Senate, 30 November 2004)

For more information, please click here

Contacts:
Lisa McElroy, Queen’s University Belfast press office
Tel: (028) 9097 5384 M: 0781 44 22 572


Laura Gallagher, Imperial College London press office, Tel: +44 (0)20 75948432
Out-of-hours duty press office:
+44 (0)7803 886248

Copyright © Queen’s University Belfast

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Researchers realize efficient generation of high-dimensional quantum teleportation January 14th, 2021

Possible Futures

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Chip Technology

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021

Nanoelectronics

Shapeshifting crystals-varying stability in different forms of gallium selenide monolayers: Researchers investigate the structure and properties of a recently identified polymorph of gallium selenide crystal layer January 1st, 2021

Atomic-scale nanowires can now be produced at scale: Scalable synthesis of transition metal chalcogenide nanowires for next-gen electronics December 25th, 2020

CEA-Leti Papers at IEDM 2020 Highlight Progress in Overcoming Challenges to Making GaN Energy-Saving, Power-Electronics Devices: Gallium Nitride Seen as Highly Efficient Replacement for Silicon In Wide Range of Consumer and Industrial Uses December 17th, 2020

Aledia, French Developer of Next-Generation MicroLED Displays For High-Volume Consumer Markets, Announces it Has Produced its First Nanowire Chips on 300mm Silicon Wafers Using CEA-Leti Pilot Lines: Company will produce microLEDs on both 200mm and 300mm silicon wafers December 15th, 2020

Announcements

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project