Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Using carbon nanotubes to detect nitric oxide: New sensor could reveal nitric oxide's role in living cells

Abstract:
Source: "The rational design of nitric oxide selectivity in single-walled carbon nanotube near infrared fluorescence sensors for biological detection"
Jong-Ho Kim et al
Nature Chemistry

Using carbon nanotubes to detect nitric oxide: New sensor could reveal nitric oxide's role in living cells

Cambridge, MA | Posted on August 23rd, 2009

Results: A new carbon nanotube sensor developed at MIT is the first sensor that can reversibly detect nitric oxide, a gas that cells commonly use to communicate with each other. Because the nitric oxide-carbon nanotube binding is reversible, the sensor can be used multiple times.

Why it matters: Nitric oxide is notoriously difficult to detect because it is so unstable. Monitoring nitric oxide levels in living cells, in real time, could help researchers figure out its role in cancer and other diseases. It would also allow closer study of nitric-oxide-releasing cancer drugs now in clinical trials. Biologists could also use such sensors to study nitric oxide's effects on the brain, where it acts as a neurotransmitter. Michael Strano, associate professor of chemical engineering and leader of the research team, says the advance will enable scientists to begin to answer some fundamental, long-standing biological questions.

How they did it: The researchers coated carbon nanotubes with a polymer designed to specifically attract nitric oxide. The polymer is wrapped tightly enough that only small molecules can get through to bind the nanotube, and the nitric oxide is strongly attracted to the nanotube by an extra pair of electrons passed from the polymer to the nanotube. The sensor is activated by near-infrared light, which easily penetrates the human body (biological tissues are relatively transparent to this kind of light).

Next steps: The team plans to start testing the sensors in living animals, and is working on similar sensors that can detect molecules other than nitric oxide.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
news office
room 11-400 77 massachusetts avenue
cambridge, ma 02139-4307 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Sensors

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic