Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Major step towards extremely sensitive chemical sensors

Atomic force microscopy image of island growth in between two electrodes (left and right) of the SAMFET. The self-assembled monolayer islands, in the middle of the figure, conduct charges. In this case, no path is formed between the two electrodes and therefore current cannot flow. The height of the molecules is 3 nanometers; the length of the gap between the electrodes (i.e. the transistor channel length) is 5 microns.
Atomic force microscopy image of island growth in between two electrodes (left and right) of the SAMFET. The self-assembled monolayer islands, in the middle of the figure, conduct charges. In this case, no path is formed between the two electrodes and therefore current cannot flow. The height of the molecules is 3 nanometers; the length of the gap between the electrodes (i.e. the transistor channel length) is 5 microns.

Abstract:
Together with colleagues from the Netherlands, Russia and Austria, researchers of TU/e gained a better understanding of the mechanism behind charge transport in SAMFETs. This opens the door to extremely sensitive chemical sensors, that could be produced in a cost-effective way. The findings were published online in Nature Nanotechnology.

Major step towards extremely sensitive chemical sensors

Eindhoven | Posted on August 14th, 2009

The research was done at Philips Research Eindhoven and Eindhoven University of Technology.

SAMFETs
The SAMFET is a recent example of the development of ‘plastic micro-electronics'- i.e. electronics based on organic materials. Last year, Philips Research managed to build such a transistor by immersing a silicon substrate into solution containing liquid crystalline molecules that self-assemble onto this substrate, resulting in a semi-conductive layer of just a single molecule thick. The monolayer of the SAMFET consists of molecules that are standing upright. Conduction takes place by charges jumping from one molecule to the other.

However, in previous attempts to make a SAMFET, it was observed that as the length of the SAMFET increased, its level of conductivity counterintuitively decreased exponentially. In a joint project Philips Research, the Eindhoven University of Technology (TU/e), the University of Groningen, the Holst Centre, the Enikolopov Institute for Synthetical Polymer Materials in Moscow and the Technical University in Graz, Austria discovered that this decrease is determined by the monolayer coverage, which could be explained with a widely applicable two-dimensional percolation model.

The ultimate chemical sensor
One could compare this to crossing a river by jumping from rock to rock. The closer the rocks are to each other, the quicker one can jump or even walk to the other river bank. So if the monolayer displays more voids, the conductivity decreases dramatically. Up till now, this behavior was an uncharted area and inhibited the use of SAMFETs in applications such as sensors and plastic electronics. The SAMFET's extreme sensitivity could open doors to the development of the ultimate chemical sensor, the research team points out. "If we go back to that river again, another benefit of a SAMFET becomes clear", Martijn Kemerink, assistant professor at the TU/e indicates. "Imagine that there are just enough rocks to cross that river. When you remove just one rock, the effect is significant, for it is impossible to make it to the other side of the river. The SAMFET could be used to make sensors that give a large signal that is triggered by a small change", he continues.

Future steps
At present, SAMFETs are not widely used, for there are alternatives of which the production process is well-established. However, the production process of SAMFETs is extremely simple and material efficient. The transistor requires only a single layer of molecules that is applied by simple immersion into a chemical solution. The same solution can be used for many substrates, for the substrate only takes the necessary (small) amount of molecules. This makes future large-scale production of monolayer electronics efficient, simple and cost-effective.

Publication
The publication "Monolayer coverage and channel length set the mobility in self-assembled monolayer field-effect transistors", by Matthijssen et al. can be found at www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.201.html.

The research was conducted at Philips Research Eindhoven and Eindhoven University of Technology. It was funded by STW, ONE-P, the Austrian Nanoinitiative en H.C. Starck GMBH.

####

About Eindhoven University of Technology
Eindhoven University of Technology (TU/e) intends to be a research driven, design oriented university of technology at an international level, with the primary objective of providing young people with an academic education within the ‘engineering science & technology’ domain.

For more information, please click here

Contacts:
Den Dolech 2
P.O Box 513, 5600 MB Eindhoven
tel: 31(0)40-247 9111
fax: 31(0)40-245 6087

Copyright © Eindhoven University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Possible Futures

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Self Assembly

In-cell molecular sieve from protein crystal February 14th, 2017

Synthetic nanoparticles achieve the complexity of protein molecules: Study published in Science reveals the structure of the largest gold nanoparticles to-date and the self-assembly mechanisms behind their formation January 25th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Sensors

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

Nanoelectronics

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

Announcements

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Alliances/Trade associations/Partnerships/Distributorships

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project