Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DOE awards $377 million in funding for 46 energy frontier research centers

Abstract:
In a major effort to accelerate the scientific breakthroughs needed to build a new 21st-century energy economy, U.S. Energy Secretary Steven Chu announced the delivery of $377 million in funding for 46 new multi-million-dollar Energy Frontier Research Centers (EFRCs) located at universities, national laboratories, nonprofit organizations, and private firms across the nation.

DOE awards $377 million in funding for 46 energy frontier research centers

Washington, DC | Posted on August 6th, 2009

"As global energy demand grows, there is an urgent need to reduce our dependence on imported oil and curtail greenhouse gas emissions," said Secretary Chu. "Meeting the challenge to reduce our dependence on imported oil and curtail greenhouse gas emissions will require significant scientific advances. These centers will mobilize the enormous talents and skills of our nation's scientific workforce in pursuit of the breakthroughs that are essential to expand the use of clean and renewable energy."

Of the $377 million awarded to the EFRCs, $277 million comes from funding made available through the Recovery Act with the remaining $100 million made from DOE's FY2009 budget. The 46 EFRCs are being funded at $2-5 million per year each for a planned initial five-year period and were selected from a pool of applications received in response to a solicitation issued by the U.S. Department of Energy Office of Science in 2008 and announced on April 27, 2009. Selection of the EFRCs was based on a rigorous merit review process utilizing outside panels composed of scientific experts. In total, the EFRC initiative represents a planned DOE commitment of $777 million over five years.

EFRC researchers will take advantage of new capabilities in nanotechnology, high-intensity light sources, neutron scattering sources, supercomputing, and other advanced instrumentation, much of it developed with DOE Office of Science support over the past decade, in an effort to lay the scientific groundwork for fundamental advances in solar energy, biofuels, transportation, energy efficiency, electricity storage and transmission, clean coal and carbon capture and sequestration, and nuclear energy.

EFRCs funded by the American Recovery and Reinvestment Act include:

* Arizona State University (Tempe, AZ) - $14 million for five years to adapt the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight.

* University of Arizona (Tucson, AZ) - $15 million for five years to enhance the conversion of solar energy to electricity using hybrid inorganic-organic materials.

* University of California, Santa Barbara (Santa Barbara, CA) - $19 million for five years to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.

* Columbia University (New York, NY) - $16 million for five years to develop the enabling science needed to realize breakthroughs in the efficient conversion of sunlight into electricity in nanometer sized thin films.

* Cornell University (Ithaca, NY) - $17.5 million for five years to understand and control the nature, structure, and dynamics of reactions at electrodes in fuel cells, batteries, solar photovolataics, and catalysts.

* University of Delaware (Newark, DE) - $17.5 million for five years to design and characterize novel catalysts for the efficient conversion of the complex molecules comprising biomass into chemicals and fuels.

* Massachusetts Institute of Technology (Cambridge, MA) - $19 million for five years to understand the transport of charge carriers in synthetic disordered systems, which hold promise as new materials for conversion of solar energy to electricity and electrical energy storage.

* University of Massachusetts (Amherst, MA) - $16 million for five years to use novel, self-assembled polymer materials in systems for the conversion of sunlight into electricity.

* University of Michigan (Ann Arbor, MI) - $19.5 million for five years to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.

* University of North Carolina (Chapel Hill, NC) - $17.5 million for five years to synthesize new molecular catalysts and light absorbers and integrate them into nanoscale architectures for improved generation of fuels and electricity from sunlight.

* Northwestern University (Evanston, IL) - $19 million for five years to synthesize, characterize, and understand new classes of materials under conditions far from equilibrium relevant to solar energy conversion, storage of electricity and hydrogen, and catalysis.

* University of Notre Dame (Notre Dame, IN) - $18.5 million for five years to understand and control, at the nanoscale, materials that contain actinides (radioactive heavy elements such as uranium and plutonium) to lay the scientific foundation for advanced nuclear energy systems.

* Pennsylvania State University (University Park, PA) - $21 million for five years to dramatically increase our fundamental knowledge of the physical structure of bio-polymers in plant cell walls to provide a basis for improved methods for converting biomass into fuels.

* Purdue University (West Lafayette, IN) - $20 million for five years to use fundamental knowledge about the interactions between catalysts and plant cell walls to design improved processes for the conversion of biomass to energy, fuels, or chemicals.

* University of Southern California (Los Angeles, CA) - $12.5 million for five years to simultaneously explore the light absorbing and emitting properties of hybrid inorganic-organic materials for solar energy conversion and solid state lighting.

* University of Texas, Austin (Austin, TX) - $15 million for five years to pursue fundamental research on charge transfer processes that underpin the function of highly promising molecular materials for photovoltaic and electrical energy storage applications.

####

For more information, please click here

Contacts:
Contact: Jeff Sherwood
202-586-4940

Copyright © DOE/US Department of Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Display technology/LEDs/SS Lighting/OLEDs

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Towards a better screen; New molecules promise cheaper, more efficient OLED displays August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Thin films

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic