Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DOE awards $377 million in funding for 46 energy frontier research centers

Abstract:
In a major effort to accelerate the scientific breakthroughs needed to build a new 21st-century energy economy, U.S. Energy Secretary Steven Chu announced the delivery of $377 million in funding for 46 new multi-million-dollar Energy Frontier Research Centers (EFRCs) located at universities, national laboratories, nonprofit organizations, and private firms across the nation.

DOE awards $377 million in funding for 46 energy frontier research centers

Washington, DC | Posted on August 6th, 2009

"As global energy demand grows, there is an urgent need to reduce our dependence on imported oil and curtail greenhouse gas emissions," said Secretary Chu. "Meeting the challenge to reduce our dependence on imported oil and curtail greenhouse gas emissions will require significant scientific advances. These centers will mobilize the enormous talents and skills of our nation's scientific workforce in pursuit of the breakthroughs that are essential to expand the use of clean and renewable energy."

Of the $377 million awarded to the EFRCs, $277 million comes from funding made available through the Recovery Act with the remaining $100 million made from DOE's FY2009 budget. The 46 EFRCs are being funded at $2-5 million per year each for a planned initial five-year period and were selected from a pool of applications received in response to a solicitation issued by the U.S. Department of Energy Office of Science in 2008 and announced on April 27, 2009. Selection of the EFRCs was based on a rigorous merit review process utilizing outside panels composed of scientific experts. In total, the EFRC initiative represents a planned DOE commitment of $777 million over five years.

EFRC researchers will take advantage of new capabilities in nanotechnology, high-intensity light sources, neutron scattering sources, supercomputing, and other advanced instrumentation, much of it developed with DOE Office of Science support over the past decade, in an effort to lay the scientific groundwork for fundamental advances in solar energy, biofuels, transportation, energy efficiency, electricity storage and transmission, clean coal and carbon capture and sequestration, and nuclear energy.

EFRCs funded by the American Recovery and Reinvestment Act include:

* Arizona State University (Tempe, AZ) - $14 million for five years to adapt the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight.

* University of Arizona (Tucson, AZ) - $15 million for five years to enhance the conversion of solar energy to electricity using hybrid inorganic-organic materials.

* University of California, Santa Barbara (Santa Barbara, CA) - $19 million for five years to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.

* Columbia University (New York, NY) - $16 million for five years to develop the enabling science needed to realize breakthroughs in the efficient conversion of sunlight into electricity in nanometer sized thin films.

* Cornell University (Ithaca, NY) - $17.5 million for five years to understand and control the nature, structure, and dynamics of reactions at electrodes in fuel cells, batteries, solar photovolataics, and catalysts.

* University of Delaware (Newark, DE) - $17.5 million for five years to design and characterize novel catalysts for the efficient conversion of the complex molecules comprising biomass into chemicals and fuels.

* Massachusetts Institute of Technology (Cambridge, MA) - $19 million for five years to understand the transport of charge carriers in synthetic disordered systems, which hold promise as new materials for conversion of solar energy to electricity and electrical energy storage.

* University of Massachusetts (Amherst, MA) - $16 million for five years to use novel, self-assembled polymer materials in systems for the conversion of sunlight into electricity.

* University of Michigan (Ann Arbor, MI) - $19.5 million for five years to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.

* University of North Carolina (Chapel Hill, NC) - $17.5 million for five years to synthesize new molecular catalysts and light absorbers and integrate them into nanoscale architectures for improved generation of fuels and electricity from sunlight.

* Northwestern University (Evanston, IL) - $19 million for five years to synthesize, characterize, and understand new classes of materials under conditions far from equilibrium relevant to solar energy conversion, storage of electricity and hydrogen, and catalysis.

* University of Notre Dame (Notre Dame, IN) - $18.5 million for five years to understand and control, at the nanoscale, materials that contain actinides (radioactive heavy elements such as uranium and plutonium) to lay the scientific foundation for advanced nuclear energy systems.

* Pennsylvania State University (University Park, PA) - $21 million for five years to dramatically increase our fundamental knowledge of the physical structure of bio-polymers in plant cell walls to provide a basis for improved methods for converting biomass into fuels.

* Purdue University (West Lafayette, IN) - $20 million for five years to use fundamental knowledge about the interactions between catalysts and plant cell walls to design improved processes for the conversion of biomass to energy, fuels, or chemicals.

* University of Southern California (Los Angeles, CA) - $12.5 million for five years to simultaneously explore the light absorbing and emitting properties of hybrid inorganic-organic materials for solar energy conversion and solid state lighting.

* University of Texas, Austin (Austin, TX) - $15 million for five years to pursue fundamental research on charge transfer processes that underpin the function of highly promising molecular materials for photovoltaic and electrical energy storage applications.

####

For more information, please click here

Contacts:
Contact: Jeff Sherwood
202-586-4940

Copyright © DOE/US Department of Energy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Cima NanoTech Debuts Large Interactive Touch Screens with European Customers at ISE 2016: For the first time in Europe, Cima NanoTech’s wide range of high performance, projected capacitive touch modules are showcased February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Thin films

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Solar/Photovoltaic

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic