Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Photonic Propulsion and fusion work art Bae Institute

August 1st, 2009

Photonic Propulsion and fusion work art Bae Institute

Abstract:
Photonic Laser Thruster (PLT) is an innovative photon thruster that amplifies photon thrust by orders of magnitude by exploiting an active resonant optical cavity formed between two mirrors on paired spacecraft. PLT is predicted to be able to provide the thrust to power ratio (T/P) approaching that of conventional thrusters, such as laser ablation thrusters and electrical thrusters. Yet, PLT has the highest Isp of 3x10^7 sec, which is orders of magnitude larger than that of other conventional thrusters. We have demonstrated the photon thrust amplification in PLT for the first time. The T/P obtained with an OC mirror with R= 0.99967±0.00002 was 20±1 µN/W, and the maximum photon thrust obtained was 35 µN, resulting in an apparent photon thrust amplification factor of 2,990±150. Scaling-up of PLT is promising, and PLT is predicted to enable wide ranges of space endeavors. Low thrust PLTs may enable nanometer precision spacecraft formation for forming ultralarge space telescopes and radars, and provide economically viable solution to Fractionated Spacecraft Architecture, the System F-6. Medium thrust PLTs may enable precision propellantless orbit changing and docking. High thrust PLTs may enable propelling spacecraft at speeds orders of magnitude greater than that by conventional thrusters.

Source:
nextbigfuture.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Blog sites

Searching for a nanotech self-organizing principle May 1st, 2016

Graphene-based Magnetoresistance Sensor 200 Times as Sensitive as Silicon November 1st, 2015

Can graphene make the world’s water clean? July 13th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Discoveries

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Photonics/Optics/Lasers

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic