Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Graphene Shows High Current Capacity & Thermal Conductivity: Study Examined Graphene Nanoribbons as Narrow as 16 Nanometers

Scanning electron microscope image shows ten graphene nanoribbons between each pair of electrodes.
Scanning electron microscope image shows ten graphene nanoribbons between each pair of electrodes.

Abstract:
Recent research into the properties of graphene nanoribbons provides two new reasons for using the material as interconnects in future computer chips. In widths as narrow as 16 nanometers, graphene has a current carrying capacity approximately a thousand times greater than copper—while providing improved thermal conductivity.

Graphene Shows High Current Capacity & Thermal Conductivity: Study Examined Graphene Nanoribbons as Narrow as 16 Nanometers

Atlanta, GA | Posted on July 31st, 2009

The current-carrying and heat-transfer measurements were reported by a team of researchers from the Georgia Institute of Technology. The same team had previously reported measurements of resistivity in graphene that suggest the material's conductance would outperform that of copper in future generations of nanometer-scale interconnects.

"Graphene nanoribbons exhibit an impressive breakdown current density that is related to the resistivity," said Raghunath Murali, a senior research engineer in Georgia Tech's Nanotechnology Research Center. "Our measurements show that these graphene nanoribbons have a current carrying capacity at least two orders of magnitude higher than copper at these size scales."

Measurements of thermal conductivity and breakdown current density in narrow graphene nanoribbons were reported June 19 in the journal Applied Physics Letters. The research was supported by the Semiconductor Research Corporation/DARPA through the Interconnect Focus Center and by the Nanoelectronics Research Initiative through the Institute for Nanoelectronics Discovery and Exploration (INDEX).

The unique properties of graphene—which is composed of thin layers of graphite—make it attractive for a wide range of potential electronic devices. Murali and his colleagues have been studying graphene as a potential replacement for copper in on-chip interconnects, the tiny wires that are used to connect transistors and other devices on integrated circuits. Use of graphene for these interconnects, they believe, would help extend the long run of performance improvements in integrated circuit technology.

"Our measurements show that graphene nanoribbons have a current carrying capacity of more than 10^8 amps per square centimeter, while a handful of them exceed 10^9 amps per square centimeter," Murali said. "This makes them very robust in resisting electromigration and should greatly improve chip reliability."

Electromigration is a phenomenon that causes transport of material, especially at high current density. In on-chip interconnects, this eventually leads to a break in the wire, which results in chip failure.

"We are learning a lot of new things about this material, which will lead researchers to consider other potential applications," said Murali. "In addition to the high current carrying capacity, graphene nanoribbons also have excellent thermal conductivity."

Because heat generation is a significant cause of device failure, the researchers also measured the ability of the graphene nanostructures to conduct heat away from devices. They found that graphene nanoribbons have a thermal conductivity of more than 1,000 watts per meter Kelvin for structures less than 20 nanometers wide.

"This high thermal conductivity could allow graphene interconnects to also serve as heat spreaders in future generations of integrated circuits," said Murali.

To study the properties of graphene interconnects, Murali and collaborators Yinxiao Yang, Kevin Brenner, Thomas Beck and James Meindl began with flakes of multi-layered graphene removed from a graphite block and placed onto an oxidized silicon substrate. They used electron beam lithography to construct four electrode contacts, then used lithography to fabricate devices consisting of parallel nanoribbons of widths ranging between 16 and 52 nanometers and lengths of between 0.2 and 1 micron.

The breakdown current density of the nanoribbons was then studied by slowly applying an increasing amount of current to the electrodes on either side of the parallel nanoribbons. A drop in current flow indicated the breakdown of one or more of the nanoribbons.

In their study of 21 test devices, the researchers found that the breakdown current density of graphene nanoribbons has a reciprocal relationship to the resistivity.

Because graphene can be patterned using conventional chip-making processes, manufacturers could make the transition from copper to graphene without a drastic change in chip fabrication.

"Graphene has very good electrical properties," Murali said. "The data we have developed so far looks very promising for using this material as the basis for future on-chip interconnects."

####

About Georgia Tech
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 19,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Media Relations Contacts:
John Toon
404-894-6986

or
Abby Vogel
404-385-3364

Copyright © Georgia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Graphene Nanoscale Heat Pipes for Chip Cooling (YouTube Video)

Nanotechnology Research Center

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Videos/Movies

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

A billion holes can make a battery November 10th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE