Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscale research nets macro funding

Abstract:
SFU's 4D LABS materials science research centre is getting about $884,000 from Western Economic Diversification Canada to add new scientific equipment for faster prototyping.

The Burnaby campus facility houses materials fabrication and design operations that help scientists research and create new technologies. The equipment will help accelerate product commercialization and spin-off companies in key sectors such as nanotechnology, energy and life sciences.

Nanoscale research nets macro funding

Burnaby, BC Canada | Posted on July 9th, 2009

4D LABS executive director Neil Branda and nanofabrication director Byron Gates—both Canada Research Chairs and renowned material scientists—will use the funds to build a Canadian state-of-the-art mask-writing facility in the centre's already impressive nanofabrication laboratory.

Masks are the stencils used in nanolithography to determine which areas are exposed for etching during the fabrication of devices such as semiconductor integrated circuits and nanoelectromechanical systems.

"This new facility will transform academic and private industry researchers' ability to quickly and cost-effectively develop and design new micro- and nanofabricated materials and devices," says Branda, a 4D LABS cofounder.

Using lithographic and mask-making processes, scientists can pattern materials with nano features to create foundations for new technology platforms. For example, nanofeatures could form the critical components in electronic and biomedical diagnostic devices.

Currently, the closest source of masks with micron-scale features (500 nanometres to 100-plus micrometres—about the diameter of a human hair) is Alberta. The SFU mask-writing facility will be able to produce nano- and micron-scale features and structures less than 20 nanometres (about 10,000 times smaller than a human hair).

Researchers will also be able to rapidly write features directly onto materials and structures, eliminating the need for extensive lithographic patterning and allowing for the creation of 3D nanoscale features.

"This capability will eventually be as key to nanoscale materials fabrication as the photocopier is to information dissemination," explains Gates. "We'll be able to fabricate the next generation of technologies, particularly in the fields of alternative energy and biomedical engineering."

####

For more information, please click here

Contacts:
Public Affairs and Media Relations
Simon Fraser University
Strand Hall
8888 University Drive
Burnaby BC V5A 1S6
Canada

Tel: 778.782.3210
Fax: 778.782.3039
Email:

Copyright © Simon Fraser University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Announcements

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Tools

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Deben reports on a new publication from scientists at La Trobe University in Australia where their CT500 stage is used in micro scanning tomography experiments to better understand ceramic matrix composites under load November 29th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Printing Flexible Graphene Supercapacitors December 1st, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project