Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscale research nets macro funding

Abstract:
SFU's 4D LABS materials science research centre is getting about $884,000 from Western Economic Diversification Canada to add new scientific equipment for faster prototyping.

The Burnaby campus facility houses materials fabrication and design operations that help scientists research and create new technologies. The equipment will help accelerate product commercialization and spin-off companies in key sectors such as nanotechnology, energy and life sciences.

Nanoscale research nets macro funding

Burnaby, BC Canada | Posted on July 9th, 2009

4D LABS executive director Neil Branda and nanofabrication director Byron Gates—both Canada Research Chairs and renowned material scientists—will use the funds to build a Canadian state-of-the-art mask-writing facility in the centre's already impressive nanofabrication laboratory.

Masks are the stencils used in nanolithography to determine which areas are exposed for etching during the fabrication of devices such as semiconductor integrated circuits and nanoelectromechanical systems.

"This new facility will transform academic and private industry researchers' ability to quickly and cost-effectively develop and design new micro- and nanofabricated materials and devices," says Branda, a 4D LABS cofounder.

Using lithographic and mask-making processes, scientists can pattern materials with nano features to create foundations for new technology platforms. For example, nanofeatures could form the critical components in electronic and biomedical diagnostic devices.

Currently, the closest source of masks with micron-scale features (500 nanometres to 100-plus micrometres—about the diameter of a human hair) is Alberta. The SFU mask-writing facility will be able to produce nano- and micron-scale features and structures less than 20 nanometres (about 10,000 times smaller than a human hair).

Researchers will also be able to rapidly write features directly onto materials and structures, eliminating the need for extensive lithographic patterning and allowing for the creation of 3D nanoscale features.

"This capability will eventually be as key to nanoscale materials fabrication as the photocopier is to information dissemination," explains Gates. "We'll be able to fabricate the next generation of technologies, particularly in the fields of alternative energy and biomedical engineering."

####

For more information, please click here

Contacts:
Public Affairs and Media Relations
Simon Fraser University
Strand Hall
8888 University Drive
Burnaby BC V5A 1S6
Canada

Tel: 778.782.3210
Fax: 778.782.3039
Email:

Copyright © Simon Fraser University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Tools

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Graphene forged into three-dimensional shapes September 26th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project