Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Life on Mars with Pete Worden

July 2nd, 2009

Life on Mars with Pete Worden

Abstract:
Pete Worden, Director of the NASA Ames Research Center and an Advisor to the Space and Physical Sciences Track of Singularity University, "We have already done a lot of work on autonomous robots, which is the first step. Many of the Mars robots we've sent there have JPL on the outside and NASA Ames on the inside, since a lot of the software has been developed right here."

"Next, we'll want to build self-replicating robots, and that's why nanotechnology, artificial intelligence, and other technologies being worked on at Singularity University are so interesting. When you start looking at self-replicating robots, a biologist would tell you "well, we already know how to do that. Those are called living cells. Microbes." in particular. So one of the obvious questions is: Can we begin to take existing microbes and engineer them to do things? And then, at some point, can you actually create synthetic life that can be engineered to extract the materials you need and construct environments?"

"We have a research group here at NASA Ames that is looking at "extremophiles," life forms able to operate under highly extreme conditions, such as close to the boiling point of water, or in highly acidic conditions. These conditions may or may not represent exactly what you'd find on Mars, but we've been able to extract these self-replicating proteins and are beginning to figure out how you can replicate them to manipulate metals to construct substrates, and maybe even grow an electronic component."

h+: Are you talking about creating "synthetic life" that will duplicate what's going on with biology?
PW: Yes. Eventually. But at first, we're just using what we've already found in nature. In fact, there was an article the other day about using viruses to create batteries, and that you can modify the genome of a virus to construct battery leads (+, -), to create a kind of "nanobattery" using the viruses.

So rather than using the current manufacturing process, where somebody melts metal and pours it into molds and machines those parts together into an electrical component, in the future, we'll use microbes and proteins to "grow" them. In a cell, a particular genetic coding manufactures a particular kind of protein that it links to build, say, a cell wall. Well, supposing we modify that so rather than building a cell wall, it builds a substrate for an electronic component. It might be a simple modification to say, "OK, build this in a flat area." Then you have another one that comes in and says "OK, every few microns we have an electronic lead."

Source:
hplusmagazine.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Synthetic Biology

In-cell molecular sieve from protein crystal February 14th, 2017

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Possible Futures

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Aerospace/Space

National Space Society and Cornell University's Cislunar Explorers Celebrate The Team's First Place Victory in NASA's Cube Quest Challenge June 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGMs three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Artificial Intelligence

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

GLOBALFOUNDRIES Extends FDX Roadmap with 12nm FD-SOI Technology: 12FDXTM delivers full-node scaling, ultra-low power, and software-controlled performance on demand September 8th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project