Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Life on Mars with Pete Worden

July 2nd, 2009

Life on Mars with Pete Worden

Abstract:
Pete Worden, Director of the NASA Ames Research Center and an Advisor to the Space and Physical Sciences Track of Singularity University, "We have already done a lot of work on autonomous robots, which is the first step. Many of the Mars robots we've sent there have JPL on the outside and NASA Ames on the inside, since a lot of the software has been developed right here."

"Next, we'll want to build self-replicating robots, and that's why nanotechnology, artificial intelligence, and other technologies being worked on at Singularity University are so interesting. When you start looking at self-replicating robots, a biologist would tell you "well, we already know how to do that. Those are called living cells. Microbes." in particular. So one of the obvious questions is: Can we begin to take existing microbes and engineer them to do things? And then, at some point, can you actually create synthetic life that can be engineered to extract the materials you need and construct environments?"

"We have a research group here at NASA Ames that is looking at "extremophiles," life forms able to operate under highly extreme conditions, such as close to the boiling point of water, or in highly acidic conditions. These conditions may or may not represent exactly what you'd find on Mars, but we've been able to extract these self-replicating proteins and are beginning to figure out how you can replicate them to manipulate metals to construct substrates, and maybe even grow an electronic component."

h+: Are you talking about creating "synthetic life" that will duplicate what's going on with biology?
PW: Yes. Eventually. But at first, we're just using what we've already found in nature. In fact, there was an article the other day about using viruses to create batteries, and that you can modify the genome of a virus to construct battery leads (+, -), to create a kind of "nanobattery" using the viruses.

So rather than using the current manufacturing process, where somebody melts metal and pours it into molds and machines those parts together into an electrical component, in the future, we'll use microbes and proteins to "grow" them. In a cell, a particular genetic coding manufactures a particular kind of protein that it links to build, say, a cell wall. Well, supposing we modify that so rather than building a cell wall, it builds a substrate for an electronic component. It might be a simple modification to say, "OK, build this in a flat area." Then you have another one that comes in and says "OK, every few microns we have an electronic lead."

Source:
hplusmagazine.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Synthetic Biology

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

Artificial enzyme mimics the natural detoxification mechanism in liver cells: Molybdenum oxide particles can assume the function of the endogenous enzyme sulfite oxidase / Basis for new therapeutic application June 30th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Rice synthetic biologists shine light on genetic circuit analysis: Bioengineers invent ‘light tube array,’ ‘bioscilloscope’ to test, debug genetic circuits March 10th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Self Assembly

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Design of self-assembling protein nanomachines starts to click: A nanocage builds itself from engineered components June 5th, 2014

Molecular self-assembly scales up from nanometers to millimeters June 5th, 2014

Nano world: Where towers construct themselves: How physicists get control on the self-assembly process June 2nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Aerospace/Space

National Space Society Calls For Less US Dependence On Russian Space Technology July 15th, 2014

Motorized Miniature Screw-Actuator Provides 20 nm Resolution, Based on Piezo Effect July 8th, 2014

NSS Pays Tribute to Space Pioneer Frederick I. Ordway III July 7th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Artificial Intelligence

New computer program aims to teach itself everything about anything June 12th, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

Synaptic transistor learns while it computes: First of its kind, brain-inspired device looks toward highly efficient and fast parallel computing November 11th, 2013

Synaptic transistor learns while it computes: First of its kind, brain-inspired device looks toward highly efficient and fast parallel computing November 2nd, 2013

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE