Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Statistical Technique Improves Nanotechnology Data

Georgia Tech researchers illustrate how their new technique improves measurement of nanostructure properties. Shown (l-r) are Zhong Lin Wang, V. Roshan Joseph, C.F. Jeff Wu and Xinwei Deng.
Georgia Tech researchers illustrate how their new technique improves measurement of nanostructure properties. Shown (l-r) are Zhong Lin Wang, V. Roshan Joseph, C.F. Jeff Wu and Xinwei Deng.

Abstract:
Improved Measurement Could Facilitate Industrial Applications

Statistical Technique Improves Nanotechnology Data

Atlanta, GA | Posted on July 1st, 2009

A new statistical analysis technique that identifies and removes systematic bias, noise and equipment-based artifacts from experimental data could lead to more precise and reliable measurement of nanomaterials and nanostructures likely to have future industrial applications.

Known as sequential profile adjustment by regression (SPAR), the technique could also reduce the amount of experimental data required to make conclusions, and help distinguish true nanoscale phenomena from experimental error. Beyond nanomaterials and nanostructures, the technique could also improve reliability and precision in nanoelectronics measurements—and in studies of certain larger-scale systems.

Accurate understanding of these properties is critical to the development of future high-volume industrial applications for nanomaterials and nanostructures because manufacturers will require consistency in their products.

"Our statistical model will be useful when the nanomaterials industry scales up from laboratory production because industrial users cannot afford to make a detailed study of every production run," said C. F. Jeff Wu, a professor in the Stewart School of Industrial and Systems Engineering at the Georgia Institute of Technology. "The significant experimental errors can be filtered out automatically, which means this could be used in a manufacturing environment."

Sponsored by the National Science Foundation, the research was reported June 25, 2009 in the early edition of the journal Proceedings of the National Academy of Sciences. The paper is believed to be the first to describe the use of statistical techniques for quantitative analysis of data from nanomechanical measurements.

Nanotechnology researchers have long been troubled by the difficulty of measuring nanoscale properties and separating signals from noise and data artifacts. Data artifacts can be caused by such issues as the slippage of structures being studied, surface irregularities and inaccurate placement of the atomic force microscope tip onto samples.

In measuring the effects of extremely small forces acting on extremely small structures, signals of interest may be only two or three times stronger than experimental noise. That can make it difficult to draw conclusions, and potentially masks other interesting effects.

"In the past, we have really not known the statistical reliability of the data at this size scale," said Zhong Lin Wang, a Regents' professor in Georgia Tech's School of Materials Science and Engineering. "At the nanoscale, small errors are amplified. This new technique applies statistical theory to identify and analyze the data received from nanomechanics so we can be more confident of how reliable it is."

In developing the new technique, the researchers studied a data set measuring the deformation of zinc oxide nanobelts, research undertaken to determine the material's elastic modulus. Theoretically, applying force to a nanobelt with the tip of an atomic force microscope should produce consistent linear deformation, but the experimental data didn't always show that.

In some cases, less force appeared to create more deformation, and the deformation curve was not symmetrical. Wang's research team attempted to apply simple data-correction techniques, but was not satisfied with the results.

"The measurements they had done simply didn't match what was expected with the theoretical model," explained Wu, who holds a Coca-Cola chair in engineering statistics. "The curves should have been symmetric. To address this issue, we developed a new modeling technique that uses the data itself to filter out the mismatch step-by-step using the regression technique."

Ideally, researchers would search out and correct the experimental causes of these data errors, but because they occur at such small size scales, that would be difficult, noted V. Roshan Joseph, an associate professor in the Georgia Tech School of Industrial and Systems Engineering.

"Physics-based models are based on several assumptions that can go wrong in reality," he said. "We could try to identify all the sources of error and correct them, but that is very time-consuming. Statistical techniques can more easily correct the errors, so this process is more geared toward industrial use."

Beyond correcting the errors, the improved precision of the statistical technique could reduce the effort required to produce reliable experimental data on the properties of nanostructures. "With half of the experimental efforts, you can get about the same standard deviation as following the earlier method without the corrections," Wu said. "This translates into fewer time-consuming experiments to confirm the properties."

For the future, the research team—which includes Xinwei Deng and Wenjie Mai in addition to those already mentioned—plans to analyze the properties of nanowires, which are critical to the operation of a family of nanoscale electric generators being developed by Wang's research team. Correcting for data errors in these structures will require development of a separate model using the same SPAR techniques, Wu said.

Ultimately, SPAR may lead researchers to new fundamental explanations of the nanoscale world.

"One of the key issues today in nanotechnology is whether the existing physical theories can still be applied to explain the phenomena we are seeing," said Wang, who is also director of Georgia Tech's Center for Nanostructure Characterization and Fabrication. "We have tried to answer the question of whether we are truly observing new phenomena, or whether our errors are so large that we cannot see that the theory still works."

Wang plans to use the SPAR technique on future work, and to analyze past research for potential new findings. "What may have seemed like noise could actually be an important signal," he said. "This technique provides a truly new tool for data mining and analysis in nanotechnology."

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 19,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Media Relations Assistance: John Toon 404-894-6986

or
Abby Vogel
404-385-3364

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Possible Futures

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Nanoelectronics

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Materials/Metamaterials

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Announcements

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Tools

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Industrial

Rare-earths become water-repellent only as they age March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project